全問題一覧

カテゴリ
以上
以下

Shota_1110

公開日時: 2024年9月6日23:25 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

正整数 $x, y$ が
$$x^{11}y^{10} = 2^{(2^{1110})} \cdot 3^{(3^{1110})} \cdot 5^{(5^{1110})} \cdot 37^{(37^{1110})} \cdot 1110$$
をみたすとき,$x$ のとり得る最小の値を求めて下さい.

解答形式

半角英数にし、答えとなる正整数値を入力し解答して下さい.

余談

OMCB020-E(URL : https://onlinemathcontest.com/contests/omcb020/tasks/9732)
のアレンジ,というよりかはこのコンテストのTester期間中に運営さんに改題を提案したときの問題です.
4bにそぐわないとして却下されましたがよければ解いてみてください.

skimer

公開日時: 2024年9月6日11:03 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 採点者ジャッジ


問題文

半径1の円上に3点A,B,Cを取る
三角形ABCの面積の最大値を答えよ

解答形式

答えのみ

skimer

公開日時: 2024年9月6日11:03 / ジャンル: 数学 / カテゴリ: / 難易度: / ジャッジ形式: ジャッジなし


なし

skimer

公開日時: 2024年9月5日21:03 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 採点者ジャッジ

三角関数 高校数学 数学

問題文

$$
\cos n\thetaは\cos\thetaのみで表せるか
$$

解答形式

表せないときは反例を
表せるときは記述で答えなさい

Cometeor

公開日時: 2024年9月5日20:16 / ジャンル: 数学 / カテゴリ: 算数 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

半径$15$の円$ω$について,ある直径$AB$を考える.
$AB$を三等分する点を順に$P,Q$とし(つまり$A・P・Q・B$の順に点が並ぶ),
$AP$を直径とする円$X$を描く.
また,$AB$に直交する直径$CD$について,同様に$R,S$を取り($C・R・S・D$の順),$CR$を直径とする円$X'$を描く.
ここで,円$X$の接線の内,$CD$と平行で且つ円$X'$側のものを直線$F$,円$X'$の接線の内,$AB$と平行で且つ円$X$側のものを直線$G$とする.
直線$F,G,$円$ω$に接する円$T$の半径を求めよ.

解答形式

答えは整数$n,m,l$で$n√m+l$と書ける.
$n+m+l$を求めて下さい.
尚,マイナス含め,全て半角で打ち込むこと.

追記

続編(normal):https://pororocca.com/problem/2048/

Cometeor

公開日時: 2024年9月5日20:16 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

点の定義は次をチェック(https://pororocca.com/problem/2047/)
$円X,X',ω$に接する円の内,小さい方の円$T'$の半径を求めよ.

解答形式

答えは互いに素な整数$a,b,c,d$で,$\frac{a+b√c}{d}$と書けるので,$a+b+c+d$を求めて下さい.但しd>0.
尚,半角で打ち込むこと.

nepia_nepinepi

公開日時: 2024年9月4日13:41 / ジャンル: 数学 / カテゴリ: / 難易度: / ジャッジ形式: 自動ジャッジ

初等幾何

問題文

正方形$ABCD$の外接円の劣弧$BC$上に点$E$がある。$AE+DE=10$ が成り立っているとき、$BE+CE$の値を求めよ。

解答形式

答は非負整数$a,b$を用いて$-a+\sqrt{b}$と表されるので、$a+b$の値を半角数字で解答してください。

gurotan

公開日時: 2024年8月31日23:02 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

次の問題の空欄に当てはまる数字を答えてください

解答形式

1行目に一つ目の空欄を補う数字、
2行目に二つ目の空欄を補う数字を書いてください

gurotan

公開日時: 2024年8月31日22:56 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ

三平方の定理 相似

問題文

次の画像の空欄に当てはまる数字を答えてください。
https://drive.google.com/file/d/1it_TfAjOic8pwV5ZPUd3P9ZRirM-7Evm/view?usp=drivesdk

解答形式

1個目の□に当てはまる数字を1行目、2個目の□は2行目に書いてください

nanohana

公開日時: 2024年8月31日22:38 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ

確率

問題文

容積が200ccのコップAとBとCがある。最初コップAとBとCには200ccの水が入っている。

6面サイコロを投げ、1が出ればAの水100ccをBに注ぎ、2が出ればBの水100ccをAに注ぎ、3が出ればBの水100ccをCに注ぎ、4が出ればCの水100ccをBに注ぎ、5が出ればCの水100ccをAに注ぎ、6が出ればAの水100ccをCに注ぐ。どの目が出るかは同様に確からしい。

ただし、コップには200ccを超える量の水は入らず、200ccを超えて注いだ水はすべてあふれ、捨てるものとする。

この操作を繰り返し続け,一方のコップが空になったときに操作を終える。10回目に操作を終える確率を求めよ。

解答方式

求める確率は互いに素な二つの正整数 a,bを用いてa/bと表すことができるため、a+bを解答してください.

nanohana

公開日時: 2024年8月31日22:33 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ

場合の数

問題文

15個の椅子が左右1列に並んでいて、最初は椅子に誰も座っていない。これから15人の人が1人ずつ訪れ、以下の行動を行う。

まだ人が座っておらず、人が座っている椅子と1つ以上離れている椅子から1つ無作為に選びそこに座る。座れる椅子がなければ、座らずに立ち去る。

15人全員の行動が終了した時の椅子の埋まり方の数を求めよ。ただし、どの人がどの椅子に座っているかは区別しない。

解答形式

半角数字で入力してください。

sdzzz

公開日時: 2024年8月31日21:33 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

$AB\lt AC$ なる鋭角三角形 $ABC$ があり,$BC$ の中点を $M$ とします.また,直線 $AB$ に $B$ で接し $M$ を通る円を $\Gamma_1$ ,直線 $AC$ に $C$ で接し $M$ を通る円を $\Gamma_2$ とし,直線 $AM$ と $\Gamma_1,\Gamma_2$ との交点のうち $M$ でない方をそれぞれ $D,E$ ,$DE$ の中点を $F$ ,$\Gamma_1$ と $\Gamma_2$ の交点を $G$ とした時,以下が成り立ちました.
$$
AM:MG=3:1,\quad AC=24,\quad CF=10
$$
この時,$BC^2$ の値を求めてください.

解答形式

例)半角数字で入力してください。