公開日時: 2024年1月1日19:28 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
鋭角三角形 $ABC$ に対し,重心と垂心をそれぞれ $G,H$ とし,直線 $GH$ と辺 $AB,AC$ との交点をそれぞれ $D,E$ とし,直線 $AH$ と辺 $BC$ の交点を $F$ としたところ,$DH:HG=4:3,BF:FC=3:7$ となりました.
${AD}^2:{AE}^2$ は互いに素な正の整数 $a,b$ を用いて $a:b$ と表されるので,$a+b$ の値を求めてください.
半角数字で解答してください.
公開日時: 2024年1月1日19:27 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
$x$ の方程式
$x=1+\dfrac{3}{2+\dfrac{4}{1+\dfrac{3}{2+\dfrac{4}{1+\dfrac{3}{2+\dfrac{4}{1+\dfrac{3}{2+\dfrac{4}{x}}}}}}}}$
の実数解の $2$ 乗和は互いに素な正の整数 $a,b$ を用いて $\dfrac{a}{b}$ と表されるので,$a+b$ の値を解答してください.
半角数字で解答してください.
公開日時: 2024年1月1日19:27 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
円に内接する $8$ 角形 $ABCDEFGH$ が $\angle{A}=121^{\circ},\angle{B}=122^{\circ},\angle{C}=123^{\circ},\angle{D}=124^{\circ},\angle{E}=125^{\circ},\angle{F}=126^{\circ}$ を満たすとき,$\angle{G}$ の大きさを度数法で解答してください.
半角数字で解答してください.
公開日時: 2024年1月1日19:27 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
実数 $x,y$ が $\bigg\{\begin{aligned}
20x+12y=20 \\
23x+31y=24
\end{aligned}$ の $2$ 式を満たすとき,$2023x+1231y$ の値を求めて下さい.
半角数字で解答してください.
公開日時: 2024年1月1日19:27 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
$8\times8$ のマス目に対し,上から $1$ 行目かつ左から $1$ 列目にあるマス目には黒を表にしてオセロの駒を置き, 残りの $63$ マスには隣り合うマスに置かれた2つの駒が同じ色を表にして置かれないようにオセロの駒を $1$ つずつ置きました.
このとき,「行もしくは列を $1$ つ選び,そこに置かれた $8$ つの駒を全て同時に裏返す」という操作を繰り返したところ,すべての駒が黒を表にして置かれました.
このときの操作回数としてあり得る最小の値を $m$ とおくとき,操作回数が $m$ であって,最終的にすべての駒が黒を表にして置かれるような操作方法の総数を求めてください.
半角数字で解答してください.
公開日時: 2024年1月1日19:27 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
$5\times5$ のマス目の異なる $2$ つのマスにナイトの駒を $1$ つずつ置き,「ナイトの駒の動きに従って $2$ つの駒を同時に動かす」という操作を繰り返したところ,$2$ つの駒が同じマスに止まりました.
このとき,最初にナイトの駒を置いた $2$ マスの組み合わせとしてあり得るものの総数を求めてください.
半角数字で解答してください.
公開日時: 2024年1月1日19:27 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
お笑いコンビ「さや香」の新山くんは以下のような「見せ算」という演算「$*$」を考案しました.
[見せ算の計算法]
$0$ 以上 $4$ 以下の整数 $a,b$ に対し,$a*b=\Bigg{\{}\begin{aligned}
0\ (a=bのとき) \\
a\ (a>bのとき) \\
b\ (a<bのとき)
\end{aligned}$
とし,$a*b$ を「 $a$ と $b$ の『眼』」と呼ぶ.
$0,1,2,3,4$ を $6$ 個ずつ左右一列に並べて得られる $M=\dfrac{30!}{({6!})^5}$ 通りの数列のうち,左に位置する $2$ 数を消し,その $2$ 数の『眼』をこの数列の左に書き込むという操作を $29$ 回繰り返した時,最後に $3$ が残るような $30$ 個の数の並べ方の総数を $N$ とします.このとき,$\dfrac{N}{M}$ は互いに素な正の整数 $p,q$ を用いて $\dfrac{q}{p}$ と表せるので,$p+q$ の値を解答してください.
半角数字で解答してください.
公開日時: 2024年1月1日19:27 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
$AB=20,CD=23,AD=12,BC=31$ を満たす四角形 $ABCD$ について,三角形 $ABD$ の内心を $I_1$ とし,三角形 $BCD$ の内心を $I_2$ とします.
$I_1I_2$ と $BD$ の交点を $X$ とすると $DX=\dfrac{12}{31}$ となったとき,$BX$ の長さは互いに素な正の整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ の値を解答してください.
半角数字で解答してください.