Puzzle #1 (Difficulty: 400)
The magic of the internet
/a/B9WqAXK
The cipher related to Euclidean construction and symbol G
RRRRRRRRGGGGGGGGBBBBBBBB
- - - - - - - - - - - ->
半角 英小文字/数字 で解答してください.
* Web 検索,プログラミング,生成 AI を利用しても構いません.
一辺が$1$の正方形$ABCD$の頂点$A$から、動点$P$を$0 \leqq \angle\mathrm{DAE} \leqq π/2$となる辺$BC,CD$上の点$E$へ向かって直進させることを考える。いずれかの辺に触れたときは入射角と反射角が等しくなるように反射させ、頂点に触れたときは入射角を$π/2$として考える。
このとき点$P$が$2$進んだ後の点の軌跡で囲まれた領域の面積$S$を求めよ。
$S$は$a/b$の形で表されるため、$b$を有理化した既約分数で回答すること。
$a=2√2-1,b=√2$の場合は、「$4-√2/2$」と回答する。
$\lim\limits_{n\to\infty} n\sin\frac{2π}{n} = mπ$ である。
$m$の値を求めよ。
$m$は2つの実数$a,b$を使って $\frac{a}{b}$と表せる。
$m$を分母が有理化された既約分数の形にした時の$a+b$を解答すること。
三角形$ABC$において,$A,B,C$から対辺に下ろした垂線の足をそれぞれ$D,E,F$とし,垂心を$H$とします.三角形$DEF$の外接円と三角形$HBC$の外接円の交点を$P,Q$とし,$EF$の中点を$M$とします.直線$HM$と直線$PQ$の交点を$R$とすると,$DR$は$AB$の中点を通り,$BC$の中点を$N$とすると,$$ND=2 CE=5$$が成立しました.このとき,$AB$の長さの二乗は互いに素な正整数$a,b$を用いて$\dfrac{a}{b}$と表せるので,$a +b$の値を解答して下さい.
半角で解答して下さい.
この問題は、Prime Prime Prime (Hard)と一部分一致しているため、相違点を赤色で強調しています。
$n$ 桁の素数であって,すべての $i,j$ $ (1 \le i $ ≦ $ j \le n)$ において, $i$ 桁目から $j$ 桁目までが素数である数のうち,最大のものを答えてください.
例えば, $23$ は $2(i=1,j=1),3(i=2,j=2),$$23(i=1,j=2)$ が全て素数なので条件を満たします.
半角数字で解答してください.
$AB=4,\angle ACB=45^\circ,AB<AC $を満たす鋭角三角形$ABC$がある。辺$BC$の中点を$M$とすると、線分$AM$上に$CP=4$となる点$P$をとることができた。また、点$Q$を辺$BC$に関し$A$と反対側に$\angle ACP=\angle PAQ,BQ=CQ$になるようにとったところ、$BQ=7$となった。このとき、線分$BC$の長さを求めよ。
求める長さの二乗、$BC^2$は互いに素な自然数$p,q$を用いて$\frac{p}{q}$と表せるので、$p+q$の値を求めてください。