全問題一覧

カテゴリ
以上
以下

L4mbdaUpsil0n

公開日時: 2025年8月30日5:09 / ジャンル: その他 / カテゴリ: その他 / 難易度: / ジャッジ形式: 自動ジャッジ

Puzzle

Puzzle #1 (Difficulty: 400)

The magic of the internet
/a/B9WqAXK

The cipher related to Euclidean construction and symbol G
RRRRRRRRGGGGGGGGBBBBBBBB
- - - - - - - - - - - ->


半角 英小文字/数字 で解答してください.
* Web 検索,プログラミング,生成 AI を利用しても構いません.

kikutaku

公開日時: 2025年8月27日15:16 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 採点者ジャッジ


問題文

太郎君は次のルールで行動する:
前日に花子さんで抜いた場合、次の日に抜く確率は$\frac{1}{5}$
前日に花子さんで抜かなかった場合、次の日に抜く確率は$\frac{2}{3}$
今日花子さんで抜かなかったとき$n$日後に抜く確率を$P_n$とする。
$n \to \infty$のときの$P_n$を、小数点5位を四捨五入して、小数点4位まで求めよ。

解答形式

答えのみ記入

piroshiki

公開日時: 2025年8月27日4:12 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

一辺が$1$の正方形$ABCD$の頂点$A$から、動点$P$を$0 \leqq \angle\mathrm{DAE} \leqq π/2$となる辺$BC,CD$上の点$E$へ向かって直進させることを考える。いずれかの辺に触れたときは入射角と反射角が等しくなるように反射させ、頂点に触れたときは入射角を$π/2$として考える。
このとき点$P$が$2$進んだ後の点の軌跡で囲まれた領域の面積$S$を求めよ。

解答形式

$S$は$a/b$の形で表されるため、$b$を有理化した既約分数で回答すること。
$a=2√2-1,b=√2$の場合は、「$4-√2/2$」と回答する。

piroshiki

公開日時: 2025年8月27日3:27 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ

代数

問題文

$\lim\limits_{n\to\infty} n\sin\frac{2π}{n} = mπ$ である。
$m$の値を求めよ。

解答形式

$m$は2つの実数$a,b$を使って $\frac{a}{b}$と表せる。
$m$を分母が有理化された既約分数の形にした時の$a+b$を解答すること。

shakayami

公開日時: 2025年8月27日0:00 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


三角形 $ABC$ について, 内心を $I$ , $A$ に関する傍心を $I_A$ , $\angle A$ の二等分線と $BC$ の交点を $D$ , 三角形 $ABC$ の外接円上の点であって, 点 $A$ を含まない方の弧 $BC$ の中点を $M$ とします.

$AM=27,MI_A=8$ のとき, $ID$ の長さを求めてください. ただし, 答えは有理数となるため, 既約分数 $a/b$ と書いたときの $a+b$ を答えてください.

kikutaku

公開日時: 2025年8月26日11:54 / ジャンル: 数学 / カテゴリ: 算数 / 難易度: / ジャッジ形式: 採点者ジャッジ


問題文

2022^2022を10で割った余り。

解答形式

どうやってといたかもかいてね。
ひらがなでいいよ。
これはさんすうだからね。

katsuo_temple

公開日時: 2025年8月24日20:53 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

三角形$ABC$において,$A,B,C$から対辺に下ろした垂線の足をそれぞれ$D,E,F$とし,垂心を$H$とします.三角形$DEF$の外接円と三角形$HBC$の外接円の交点を$P,Q$とし,$EF$の中点を$M$とします.直線$HM$と直線$PQ$の交点を$R$とすると,$DR$は$AB$の中点を通り,$BC$の中点を$N$とすると,$$ND=2 CE=5$$が成立しました.このとき,$AB$の長さの二乗は互いに素な正整数$a,b$を用いて$\dfrac{a}{b}$と表せるので,$a +b$の値を解答して下さい.

解答形式

半角で解答して下さい.

astraea

公開日時: 2025年8月24日20:15 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

$\alpha$が$\tan\alpha= \frac{1}{\sqrt{2}}$($0<\alpha< \frac{π}{2}$)を満たす定数であるとき、定積分$ \frac{1}{π}\int_{\alpha}^{\frac{π}{4}} \frac{\tan^{3}θ+\tanθ}{\tan^{4}θ-\tan^{2}θ+1}dθ $の値を求めよ。

解答形式

分母を有理化すると自然数$a,b$を用いて$ \frac{\sqrt{a}}{b}$と表されるので、$a+b$の値を半角入力の数字のみで答えてください。

sembri

公開日時: 2025年8月24日14:30 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ


63999271を素因数分解した時に出てくる素因数全ての和を求めなさい。

例:35の時
 5+7=12と解答。

yu23578

公開日時: 2025年8月23日12:54 / ジャンル: その他 / カテゴリ: なぞなぞ / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

πの翻訳ってなーんだ?

解答形式

カタカナで解答してください

yu23578

公開日時: 2025年8月23日11:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ

素数

問題文

この問題は、Prime Prime Prime (Hard)と一部分一致しているため、相違点を赤色で強調しています。

$n$ 桁の素数であって,すべての $i,j$ $ (1 \le i $  $ j \le n)$ において, $i$ 桁目から $j$ 桁目までが素数である数のうち,最大のものを答えてください.
例えば, $23$ は $2(i=1,j=1),3(i=2,j=2),$$23(i=1,j=2)$ が全て素数なので条件を満たします.

解答形式

半角数字で解答してください.

Hapican_

公開日時: 2025年8月23日11:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

$AB=4,\angle ACB=45^\circ,AB<AC $を満たす鋭角三角形$ABC$がある。辺$BC$の中点を$M$とすると、線分$AM$上に$CP=4$となる点$P$をとることができた。また、点$Q$を辺$BC$に関し$A$と反対側に$\angle ACP=\angle PAQ,BQ=CQ$になるようにとったところ、$BQ=7$となった。このとき、線分$BC$の長さを求めよ。

解答形式

求める長さの二乗、$BC^2$は互いに素な自然数$p,q$を用いて$\frac{p}{q}$と表せるので、$p+q$の値を求めてください。