正方形$ABCD$の外接円の劣弧$BC$上に点$E$がある。$AE+DE=10$ が成り立っているとき、$BE+CE$の値を求めよ。
答は非負整数$a,b$を用いて$-a+\sqrt{b}$と表されるので、$a+b$の値を半角数字で解答してください。
容積が200ccのコップAとBとCがある。最初コップAとBとCには200ccの水が入っている。
6面サイコロを投げ、1が出ればAの水100ccをBに注ぎ、2が出ればBの水100ccをAに注ぎ、3が出ればBの水100ccをCに注ぎ、4が出ればCの水100ccをBに注ぎ、5が出ればCの水100ccをAに注ぎ、6が出ればAの水100ccをCに注ぐ。どの目が出るかは同様に確からしい。
ただし、コップには200ccを超える量の水は入らず、200ccを超えて注いだ水はすべてあふれ、捨てるものとする。
この操作を繰り返し続け,一方のコップが空になったときに操作を終える。10回目に操作を終える確率を求めよ。
求める確率は互いに素な二つの正整数 a,bを用いてa/bと表すことができるため、a+bを解答してください.
15個の椅子が左右1列に並んでいて、最初は椅子に誰も座っていない。これから15人の人が1人ずつ訪れ、以下の行動を行う。
まだ人が座っておらず、人が座っている椅子と1つ以上離れている椅子から1つ無作為に選びそこに座る。座れる椅子がなければ、座らずに立ち去る。
15人全員の行動が終了した時の椅子の埋まり方の数を求めよ。ただし、どの人がどの椅子に座っているかは区別しない。
半角数字で入力してください。
$AB\lt AC$ なる鋭角三角形 $ABC$ があり,$BC$ の中点を $M$ とします.また,直線 $AB$ に $B$ で接し $M$ を通る円を $\Gamma_1$ ,直線 $AC$ に $C$ で接し $M$ を通る円を $\Gamma_2$ とし,直線 $AM$ と $\Gamma_1,\Gamma_2$ との交点のうち $M$ でない方をそれぞれ $D,E$ ,$DE$ の中点を $F$ ,$\Gamma_1$ と $\Gamma_2$ の交点を $G$ とした時,以下が成り立ちました.
$$
AM:MG=3:1,\quad AC=24,\quad CF=10
$$
この時,$BC^2$ の値を求めてください.
例)半角数字で入力してください。
$\angle ABC $ と $\angle BCA$ が鋭角であるような $\triangle ABC$ について,辺 $BC$ の中点を $M$ とします.また,$M$ から辺 $AB,AC$ におろした垂線の足をそれぞれ $P, Q$ とすると、線分 $AM, BQ, CP$ が一点で交わります.
$$ AB = 12, \ \ BC= 20 $$
のとき,$\triangle ABC$ の面積の二乗としてありうる値の総和を解答してください。
答えは正の整数値となるので, その整数値を半角で入力してください.
△ABCの内心をI, 直線AIとBCの交点をDとするとAI=CI=CD=6 であった. このときACの長さは正の整数a,b を用いて√a+bと表せるので, a+bを解答してください.
答えは正の整数値となるので, その整数値を半角で入力してください.
△ABCの内心をIとし直線AIと△ABCの外接円の交点のうちAでないものをM, 直線AMとBCの交点をD, Aから BCへの垂線の足をHとするとAD=4, BH=DM=2 であった. このときCDの長さは正の整数a,bを用いて√a-bと表せるので, a+bを解答してください.
答えは正の整数値となるので, その整数値を半角で入力してください.