問題文
正十二角形ABCDEFGHIJKL があります。
袋の中に A〜L までの文字が書かれた12枚のカードが入っています。この袋からカードを1枚引いては戻す作業を 5回 繰り返します。
引いたカードに記された頂点同士を、円周上の順番に従って結び、多角形を作ります。ただし、以下のルールに従うものとします。
同じ頂点を複数回引いた場合は、1つの頂点としてカウントする。
選ばれた頂点の種類が2種類以下の場合は、多角形ができないものとして面積を0とする。
結んだ線分が多角形の内部で交差しないよう、頂点を結ぶ。
このとき、形成された多角形の面積が、もとの正十二角形の面積のちょうど 1/3 になる確率を求めなさい。
解答形式
解答はx/yと表せられるのでx+yの値を答えなさい