公開日時: 2025年8月16日21:00 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
複素数の定数 $\alpha$ に対し、$|z- \alpha\bar{z}|\leq1-|\alpha|^2$ を満たす複素数 $z$ 全体の集合を $D$ とおく。以下の解答欄を埋めよ。
(1)$\alpha=0$ のとき、$D$ は複素数平面上で原点を中心とする半径 $\fbox{ア}$ の円の周上および内部になる。
次に $|\alpha|>0$ の場合を考える。以下、$\displaystyle \arg \alpha=\frac{6}{11}\pi$ とする。
(2) $|\alpha|=1$ のとき、$D$ は複素数平面上で原点を通る直線となり、偏角が $\displaystyle \frac{\fbox{イ}}{\fbox{ウエ}}\pi,\ \frac{\fbox{オカ}}{\fbox{キク}}\pi$ であるような複素数を全て含む。ただし $0\leq \displaystyle \frac{\fbox{イ}}{\fbox{ウエ}}\pi < \frac{\fbox{オカ}}{\fbox{キク}}\pi<2\pi$ とする。
(3) $0<|\alpha|<1$ の場合を考えよう。原点を中心として $z$ を反時計回りに $\displaystyle -\frac{\fbox{イ}}{\fbox{ウエ}}\pi$ だけ回転させた複素数を $w$ とおく(ただし $z=0$ のときは $w=0$ とする)。$z$ が $|z- \alpha\bar{z}|\leq1-|\alpha|^2$ を満たして動くときに $w$ が動く領域について考察することで、$D$ に対応する複素数平面上の図形が明らかになる。特に $|\alpha|=0.4$ のとき、$D$ の面積は $\displaystyle\frac{\fbox{ケコ}}{\fbox{サシ}}\pi$ である。
解答欄ア〜シには、それぞれ0から9までの数字が1つ入る。同じカタカナの解答欄には同じ数字が入る。
(1)の答えとして、文字「ア」を半角で1行目に入力せよ。
(2)の答えとして、文字列「イウエオカキク」を半角で2行目に入力せよ。
(3)の答えとして、文字列「ケコサシ」を半角で3行目に入力せよ。
なお、分数はできるだけ約分された形となるように答えること。
公開日時: 2023年12月10日18:57 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 採点者ジャッジ
$$\sum_{k=1}^{n}x^{-2k} =0 [n \in {\mathbb N}]$$
というxの方程式がある。
このとき、以下の問いに答えよ。
なお、この方程式には実数解が存在しない。
1)実数解を持たないことを示せ。(証明必須)
2)解の個数を示せ。(証明不要)
3)n=4の時の解の全てを示せ。(証明不要)
1)には証明を、
2)には数値もしくは数式を、
3)には直交座標表示もしくは三角関数による極座標表示を推奨する。
例
1)自明
2)1729n+65536
3)x=1+3i,3(cosπ/3+isinπ/3)
もちろんこれらが答えでは無い。
2)を解く際は解の式を作成するべきだろう。
wolfram alphaに頼ることはおすすめしない。