全問題一覧

カテゴリ
以上
以下

$n$ を非負整数とする.番号 $0,1,2,\cdots,2^n-1$ が $1$ つずつ振られた $2^n$ 枚の札が箱に入っている.「箱から札を無作為に $1$ 枚取り出し,札の番号を記録してから箱の中に戻す」という操作を考える.
以下の問いに答えよ.ただし,自然数 $N$ に対し,$\displaystyle\frac N{2^m}$ が自然数となるような最大の非負整数 $m$ を $f(N)$ で表すとする.

$(1)$ 操作を $1$ 回おこない,記録した番号を $b$ とする.このとき,$f({}_{2^n}\mathrm C_b)$ の期待値を求めよ.

$(2)$ 操作を $2$ 回おこない,記録した番号を $a,b$ とする.このとき,$f({}_{2^n+a}\mathrm C_b)$の期待値を求めよ.

ただし,解答に際しては $n=10$ のときの値を答えよ.
答えの値は, $\displaystyle \xi+\frac{\eta}{\zeta}$ のように,整数部分 $\xi$ と小数部分 $\displaystyle\frac{\eta}{\zeta}$ に分けて求める.ここで,$\eta$ は非負整数,$\zeta$ は自然数で,$\eta$ と $\zeta$ は互いに素とする.
$(1)$ の $\xi,\eta,\zeta$ の値をそれぞれ $1,2,3$ 行目に,$(2)$ の $\xi,\eta,\zeta$ の値をそれぞれ $4,5,6$ 行目に記して答えとせよ.