公開日時: 2024年6月1日15:02 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
赤い音符と青い音符の二種類の音符を横に並べたものを譜面と呼びます.
以下の条件を同時に全て満たすような譜面がいくつあるかを求めてください.
非負整数を半角数字で入力し解答してください。
公開日時: 2024年6月1日10:13 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
三角形$ABC$は$|AB|=84$、$|BC|=|CA|=72$を満たす二等辺三角形です。この三角形の垂心を$H$、頂点$A, B, C$から延びる垂線の足をそれぞれ$D,E,F$と置きます。さらに、直線$CF$上に$|DF|=|DG|$を満たす$F$でない点$G$をとります。この時、四角形$DFEG$の面積は互いに素な正整数$p,r$と平方因子を持たない数$q$を用いて$\dfrac{p\sqrt{q}}{r}$と表されるので、$p+q+r$を解答してください。ただし、$|AB|$で$AB$間の距離を表すものとします。
半角数字で解答してください。
公開日時: 2024年5月29日19:16 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
正整数 $N$ について,次の $2$ つのことがわかっています.
$10a+b$ の値を解答してください.
答えは正の整数値となるので, その整数値を半角で入力してください.
公開日時: 2024年5月16日22:22 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
三角形 $ABC$ があり,以下が成り立っています:
$$AB = 7 , \angle A + 2\angle C = 60^{ \circ } .$$
いま,辺 $BC$ 上に $\angle CAP = 3\angle BAP$ をみたす点 $P$ をとり,さらに辺 $AC$ 上に $\angle APQ = 2\angle ACB$ をみたす点 $Q$ をとったところ,$BQ = 2$ が成立しました.このとき,線分 $AC$ の長さは互いに素な正整数 $a , b$ を用いて $\dfrac{ a }{ b }$ と表せるので,$a + b$ を解答してください.
半角数字で解答してください.
公開日時: 2024年5月15日22:18 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
$A,B$を全ての要素が$2$以上$2024$以下の自然数からなる集合で$A$と$B$の和集合の要素数が$2023$個であるものとします。$A,B$から要素を自由に$1$つずつ選ぶとき、どのように要素を選んでもその$2$つの数の最大公約数が$1$になるような$A,B$の組$(A,B)$の個数を求めてください。ただし、必要ならインターネットにある素数表を検索して用いても構いません。また、空集合も条件を満たすものとしてください。
問題を少し変更いたしました。
答えは正の整数$n$を用いて$2^n$と表せますから$n$を半角で1行目に入力してください。
公開日時: 2024年5月12日18:17 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
下の図において, $\triangle ABC$ と $\triangle BDE$ は二等辺三角形です. さらに,
$$\angle ABC=\angle BDE=90^\circ,\hspace{1pc} \angle EBC=60^\circ\\
BC=32, \hspace{1pc} DB=6\sqrt{2}$$ が成立します. 線分 $AE$ の中点を $M$ とするとき, 線分 $DM$ の長さを求めてください.
ただし, $E$ は $\triangle ABC$ の内側にあります.
答えは正の整数値となるので, その整数値を半角で入力してください.
公開日時: 2024年5月8日1:41 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
素数 $p,q$ が
$$4^p+2^p+1=p^2q$$を満たします. このようなすべての組 $(p,q)$ に対して, $p+q$ の総和を解答してください.
答えは正の整数値となるので, その整数値を半角で入力してください.
公開日時: 2024年5月6日17:57 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
$3$ つの自然数を積が $1000000$ となるように選ぶ方法は何通りありますか.
答えは正の整数値となるので, その整数値を半角で入力してください.
追記:
回答いただいた内容的に, $3$ つの自然数を区別するかどうかがわかりにくかったと思われるので追記します.
この問題では $3$ つの自然数は区別しません. すなわち, $(1,10,100000)$ と $(10,1,100000)$ のように
並び替えただけの組は同一のものとみなします.