数学の問題一覧

カテゴリ
以上
以下

tanと等差数列

kusu394 自動ジャッジ 難易度:
15月前

6

問題文

座標平面上の $2$ 点 $A(14,0),B(-14,0)$ を考えます. また, $x$ 軸上にない格子点 $C (p,q)$ を $\triangle ABC$ が直角三角形とならないようにとります.
$$\tan \angle{ABC},\ \tan \angle{BCA},\ \tan \angle{CAB}$$
がこの順に等差数列となるとき, 点 $C$ として考えられるすべての座標に対して $p^2+q^2$ の総和を解答してください. ただし, 格子点とは $x$ 座標も $y$ 座標も整数であるような点のことを指します.

解答形式

答えは正の整数となるので, その整数値を半角で解答してください.

orangekidの異常な愛情

orangekid 自動ジャッジ 難易度:
15月前

32

$\text{n-テトロミノ}$とは、正方形を四つ、下のようにつなげた図形です。

orangekidくんはこの図形が大好きなので、下の図のような形をした画用紙からなるべく多くの$\text{n-テトロミノ}$を切り出したいです。

$\text{n-テトロミノ}$を裏返しの状態で切り出してもよいものとするとき、orangekidくんは最大何個の$\text{n-テトロミノ}$を切り出せるでしょうか。
「個」はつけずに、整数値のみで答えてください。

自作問題1

aonagi 自動ジャッジ 難易度:
16月前

19

問題文

一辺の長さが $1$ の立方体 $1800$ 個から構成される,長さ $10,12,15$ の辺からなる直方体があります.
このとき,直方体の対角線のうちの $1$ つについて,これが内部を通過する立方体の個数を求めてください.

ただし,立方体の内部とは,頂点や辺・面そのものを含まないものとして考えます.

解答形式

求めるべき値は非負整数値として一意に定まるので,これを解答してください.

2の累乗

G414xy 自動ジャッジ 難易度:
16月前

27

問題文

2^nの1桁目が9となる最小のnを求めよ。

解答形式

半角数字で答えること。

G414xy 自動ジャッジ 難易度:
16月前

51

問題文

xy=(x-1)(y-1)+10 となるxyの総和を求めよ。但し、x,yは正整数とする。

解答形式

半角数字で入力すること。

長さはいくつ?

Yushin404 自動ジャッジ 難易度:
16月前

1

問題文

※これは一般公開向けの問題ではありません.
この前の問題を思い出してください.

解答形式

問題の指示に従って解答を非負整数で入力してください.
正しくないジャッジ結果となるのを防ぐため,解答に空白文字を含まないようにしてください.

体育会系数学部

simasima 自動ジャッジ 難易度:
16月前

47

問題文

正整数 $n$ について $d(n)$ で $n$ の正の約数の個数を表すとき、
$$\sum^{100000}_{k=1}d(k)$$
の値を求めよ。

以下は体育会系数学部のある部員がこの問題に挑戦した記録である。


とりあえず1から順に約数の個数を数えていくぞ!
$d(1)=1$
$d(2)=2$
$d(3)=2$
$d(4)=3$
...
$d(100)=9$
これを $100000$ までやるのは大変だな...
もしかして主客転倒すれば
$$\sum^{100000}_{k=1} \left [\frac{100000}{k}\right ]$$
を計算すればいいのでは?やってみよう!
$\sum^{1}_{k=1} [\frac{100000}{k} ] =100000$

$\sum^{2}_{k=1} [\frac{100000}{k}] =150000$

$\sum^{3}_{k=1} [\frac{100000}{k}] =183333$

...

$\sum^{100}_{k=1} [\frac{100000}{k} ] =518692$

この調子でどんどん計算していくぞ!

...

$\sum^{1000}_{k=1} [\frac{100000}{k} ] =748058$

流石に疲れてきたな...

...

$\sum^{2024}_{k=1} [\frac{100000}{k} ] = 818025$

意識が朦朧としてきた...


その後部員は救急車で病院に搬送された。
部員の途中計算は間違っていないようだ。部員の意思を継いでこの問題の答えを出してほしい。

解答形式

非負整数で解答してください。

Golden Gokiburi

simasima 自動ジャッジ 難易度:
16月前

62

問題文

大変だ!Golden Gokiburi が座標 $(0,0)$ に出たぞ!
Golden Gokiburi は 一回の移動で $(x,y)$ から $(x+1,y+1)(x,y+1)(x-1,y+1)(x+1,y)(x-1,y)(x,y-1)$ の6地点のうちいずれか一つに等確率で移動します。
$(3,7)$ にいるしましま君は不安で不安で仕方がありません。
$(0,0)$ にいる Golden Gokiburi が $900$ 回移動した後の $(3,7)$ と Golden Gokiburi との距離の $2$ 乗の期待値を求めてください。

解答形式

答えは非負整数になるので半角で解答してください。

勇者・しおしおと草将

simasima 自動ジャッジ 難易度:
16月前

17

問題文

これまでのあらすじ (読まなくてもこの問題を解くことが出来ます)
https://onlinemathcontest.com/contests/omc032/tasks/12
https://onlinemathcontest.com/contests/omc032/tasks/15
勇者・しおしおの飛ばされた異世界では、将棋に草将と言う駒が追加されていました。
この駒は、以下に示された $6$ マスのいずれかに $1$ 手で移動できます。

この異世界での将棋は盤面がデカすぎてクソゲーだったので、しおしおは別の遊びを考えました。

白と黒の $2$ 色で塗られた $9×9$ の盤面について、良い盤面を以下のように定義します。

最下段の黒いマスから上手く選んで草将を置くと黒いマスの上だけを草将が移動して最上段の黒いマスのどれかに行く事が出来る。

以下に具体例を示します。
①の盤面では右から三列目に草将を置き矢印に沿って草将を移動させることで左から二列目の最上段の黒マスに到達できるので良い盤面です。
②の盤面も矢印のように草将を動かせるので同様に良い盤面です。
③の盤面ではどのようにしても最上段の黒いマスにたどり着けないので良い盤面ではありません。
④の盤面はそもそも最下段に黒いマスが無いので良い盤面ではありません。
⑤の盤面も最上段に黒いマスが無いので良い盤面ではありません。

全てのマスが白い盤面に対して、白マスをランダムに $1$ つ選んで黒マスに変更するという操作を良い盤面になるまで繰り返す時、最終的な盤面の黒マスの数の期待値を求めてください。ただし、答えは互いに素な正整数 $a,b$ を用いて $\frac{a}{b}$ と表せるので$a+b$を解答してください。

解答形式

半角で正整数を解答してください

全不変眼数列

simasima 自動ジャッジ 難易度:
16月前

54

問題文

実数上の二項演算である「見せ算」を次のように定義します(今回は見せ算の中でも初等的な性質のみ扱います。)
$$
x \spadesuit y= \begin{cases} y & (x<y) \\ 0 & (x= y)\\ x & (x> y) \end{cases}
$$
この見せ算では結合法則が成り立たたず、計算順序により眼(答え)が変わる事があります。例えば、$((4 \spadesuit 4) \spadesuit 3)=3$ ですが、$(4 \spadesuit (4 \spadesuit 3))=0$ です。
数列 $(a_1,a_2,...,a_n)$ であって、$a_1\spadesuit a_2\spadesuit ....\spadesuit a_n$ をどんな順序で計算しても眼(答え)が変わらない数列を 全不変眼数列 と呼びます。
例えば、$(0,4,0,1)$ はどのような順序で計算しても眼が $4$ になるので 全不変眼数列 ですが、$(1,2,2,1)$ は $(((1 \spadesuit 2) \spadesuit 2) \spadesuit 1)=1$、 $(1 \spadesuit ((2 \spadesuit 2) \spadesuit 1))=0$ であるため 全不変眼数列 ではありません。
長さが $24$ で、$0,1,2,3$ を要素としてそれぞれ $6$ つずつ持つような 全不変眼数列 はいくつありますか?

解答形式

半角で解答してください

しましまのアンチ

simasima 自動ジャッジ 難易度:
16月前

50

問題文

$1$文字目と$3$文字目が等しく、$2$文字目と$4$文字目が等しい$4$文字の文字列をしましま文字列と呼ぶことにします。
例えば「しましま」や「bcbc」や「aaaa」はしましま文字列ですが、「もじれつ」や「ababa」や「abac」などはしましま文字列ではありません。

しましまは嘘の競技数学コンテストUSOMOを懲りずに毎年開いているので、ついにHONTOMOの元日本代表のアンチがついてしまいした(悲しい...)
しましま文字列を(連続しなくても良い)部分文字列として持たない文字列をアンチしましま文字列と呼ぶことにします。
例えば「ししまま」や「abcbba」や「abcdefgcc」はアンチしましま文字列ですが、「しましまし」や「abbcbba」や「acbadb」はアンチしましま文字列ではありません。

15文字のアンチしましま文字列であって全ての文字が a,b,c,d,e の5文字のうちのいずれかであるような文字列はいくつ存在しますか?

解答形式

非負整数を半角で入力してください

自作問題G1

imabc 自動ジャッジ 難易度:
16月前

8

問題文

https://mathlog.info/articles/Lf8QaKPklfv156yuq309 問題13)
 三角形$ABC$において外接円,内接円,角$A$内の傍接円の半径をそれぞれ$R,r,r_A$とすると

$$R=14,r=6,r_A=19$$

が成り立ちました.このとき$BC$の長さの二乗を求めてください.

解答形式

答えを入力してください.