半径が$14$の円$Ω$に内接し, $AB>AC$を満たす鋭角三角形$ABC$について, 内心を$I$, $A$傍心を$J$とする. 辺$AJ$の垂直二等分線と$Ω$の交点の内, 点$C$側にあるものを$D$, $B$側にあるものを$E$とし, 三角形$JBC$の外接円と三角形$JDE$の外接円の交点を$X(\neq J)$としたところ, 以下が成り立った.
$$
CX:CD=8:3, AI=10
$$
辺$BC$と辺$DE$の交点を$F$としたときの線分$XF$の長さの二乗を求めてください.
三角形 $OAB$ がある.点 $C$ を$\angle CAO=\angle BAO$, $AC\perp CO$ となるように辺 $AB$ に対し点 $O$ と同じ側に取る.
また,点 $B$ から直線 $CO$ に引いた垂線の足を $D$ とする.
$C$ を通り直線 $OB$ に垂直な直線と $D$ を通り直線 $OA$ に垂直な直線の交点を $G$ とするとき,
$CD=17,\, GO=8,\, GC=15$ である.
このとき $AB$ の長さは互いに素な正整数 $a,b$ と平方因子を持たない正整数 $c$ を用いて $\dfrac{b\sqrt{c}}{a}$ と書けるので,$a+b+c$ を求めよ.
半角数字で入力してください。
三角形$ABC$において,$AB,BC$の中点をそれぞれ$M,N$とし,重心を$G$とします.三角形$AGM$の外接円と三角形$CGN$の外接円が再び交わる点を$P$とすると以下が成立しました.$$GP//BC AB=5 AC=4$$このとき線分$GP$の長さの二乗は互いに素な正整数$a,b$を用いて$\dfrac{a}{b}$と表せるので,$a +b$の値を解答して下さい.
例)ひらがなで入力してください。