数学の問題一覧

カテゴリ
以上
以下

hya_math

公開日時: 2025年10月11日13:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


鋭角三角形$ABC$について,その外接円を$\Gamma$,外心を$O$,垂心を$H$,点$A$から辺$BC$に下した垂線の足を$D$とします.さらに,直線$AO$と辺$BC$の交点を$E$,直線$AO$と$\Gamma$の交点を$F$とすると以下が成立しました.
$$
OH=10, DH=12, EF=13
$$
このとき$\Gamma$の面積としてありうるものの総和は互いに素な正の整数$a,b$を用いて$\frac ab\pi$と表せるので$a+b$を回答してください.

hya_math

公開日時: 2025年10月11日13:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


$99989796…090807060504030201$を$97$で割った余りを求めてください.

OooPi

公開日時: 2025年10月11日13:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ

#競技数学

問題文

以下の式の値を $1000$ で割った余りを答えよ
$$
47!\sum_{k=1}^{45}\
\frac{2k^{3}+7k^{2}+5k-3}{(k+2)!}
$$

解答形式

正整数で回答してください

nmoon

公開日時: 2025年10月3日12:30 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

横一列に並んだ $14$ 個のオセロの石があります.そして,以下の操作を何度か行い,黒面を向いた石の個数をできるだけ少なくします.

  • 連続して並んだ $4$ 個の石を選んで,左から $1,2,4$ 個目の石を全て裏返す.

全ての操作の終了後に黒面を向く石の個数を スコア とします.最初の石の配色は $2^{14}$ 通りありますが,これら全ての場合においてスコアの総和を求めてください.
 但し,オセロの石は,片方が黒面で,もう片方が白面であるとする.

解答形式

正整数で答えてください.

nmoon

公開日時: 2025年10月3日12:30 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

nmoon君は黒板に $60$ の正の約数を一つずつ全て書き込みます.そして,以下の操作をできなくなるまで行います.

  • 黒板に書かれた $2$ つの正の整数 $x,y$ について,黒板から $x,y$ を消し,$x,y$ の最大公約数と最小公倍数を黒板に書き込む.但し,このとき,操作前と操作後での黒板に書かれた数が,重複を許して全て一致することはないようにする.

全ての操作が終了したとき,黒板に書かれた数の総和としてあり得る値の総和を求めてください.

解答形式

正整数で答えてください.

nmoon

公開日時: 2025年10月3日12:30 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

以下の式を満たす正の整数の組 $(m,n)$ 全てについて,$m + n$ の総和を求めてください.

$$(mn - 1)^2 + (m + n)^2 = 650$$

解答形式

正整数で答えてください.

nmoon

公開日時: 2025年10月3日12:30 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

$0$ 以上 $1$ 以下の実数 $a_{1} , a_{2} , a_{3}$ について,以下の値の最大値を求めてください.

$$a_{1} + 2a_{2} +3a_{3} +4\sqrt{a_{1}(1-a_{1}) + a_{2}(1-a_{2}) + a_{3}(1-a_{3})}$$

解答形式

求める値を $M$ としたとき,$10000M$ の整数部分を解答してください.

nmoon

公開日時: 2025年10月3日12:30 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

正三角形 $ABC$ の内部に点 $P$ をとったところ,以下が成立しました.

$$AP = 10 , BP = 14 , CP = 16$$

このとき,正三角形 $ABC$ の面積を求めて下さい.

解答形式

求める値を $2$ 乗した値は正整数となるので,その値を求めて下さい.

F


7

nmoon

公開日時: 2025年10月3日12:30 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

$AB \lt AC$ を満たす鋭角三角形 $ABC$ の垂心を $H$,とする.直線 $BH, CH$ と三角形 $ABC$ の外接円との交点をそれぞれ $E (\not = B) , F (\not = C)$ とし,辺 $AB , AC$ と 線分 $EF$ との交点をそれぞれ $P , Q$ とする.直線 $AC$ に関して $P$ と対称な点を $R$,直線 $AB$ に関して $Q$ と対称な点を $S$ とし,三角形 $RSH$ の外心を $O$ とすると,以下が成立した.

$$ AH = 3 , BC = 4 , AO = 1$$

このとき,$AB$ の長さを求めてください.

解答形式

互いに素な正整数 $b , c$ および正整数 $a$ を用いて $\dfrac{\sqrt{a} - b}{c}$ と表されるので,$a + b + c$ を答えてください.

MARTH

公開日時: 2025年10月3日12:07 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


以下で定義される関数 $f$ について, $f(15000,25000)$ を素数 $4999$ で割った余りを求めてください.
$$f(m,n)=\sum_{\ell=1}^{n}\sum_{\substack{a_1,\cdots,a_{\ell}\geq 1\\\\ a_1+\cdots +a_{\ell}=n}}(-1)^{\ell}\binom{m}{a_1}\cdots \binom{m}{a_{\ell}}$$
$$\quad$$

k4rc

公開日時: 2025年10月1日0:54 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ

初等幾何

問題文

$AB \lt AC$ なる三角形 $ABC$ について,その外心を $O$ とし,線分 $BC$ 上に点 $D$ を $BD \gt CD$ となるように取ります. $B,C$ から直線 $AD$ に下ろした垂線の足をそれぞれ $X,Y$ とし, $X$ を通り直線 $AB$ に平行な直線と $Y$ を通り直線 $AC$ に平行な直線の交点を $Z$ とすると,三角形 $XYZ$ の外接円と三角形 $ABC$ の外接円は点 $T$ で接しました.また,直線 $BC$ について $O$ と対称な点を $S$ とすると,以下が成り立ちました.
$$ AS:AO:OD = 7:5:2$$このとき, $\dfrac{AT}{AO}$ の値は互いに素な正の整数 $a,b$ を用いて $\sqrt{\dfrac{a}{b}}$ と表せるので, $a+b$ の値を解答してください.

解答形式

正の整数を半角で解答.

poinsettia

公開日時: 2025年9月30日22:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

三角形 $ABC$ について,線分 $BC,CA$ の中点を $M,N$ とし,三角形 $AMN$ の外接円と三角形 $ABC$ の外接円,半直線 $AB$ がそれぞれ $A$ でない点で交わったのでそれぞれを $D, E$ とする.$MD=5, AB=34, BE=7$ が成り立つとき,線分 $BC$ の長さの二乗を解答せよ.