三角形 $OAB$ がある.点 $C$ を$\angle CAO=\angle BAO$, $AC\perp CO$ となるように辺 $AB$ に対し点 $O$ と同じ側に取る.
また,点 $B$ から直線 $CO$ に引いた垂線の足を $D$ とする.
$C$ を通り直線 $OB$ に垂直な直線と $D$ を通り直線 $OA$ に垂直な直線の交点を $G$ とするとき,
$CD=17,\, GO=8,\, GC=15$ である.
このとき $AB$ の長さは互いに素な正整数 $a,b$ と平方因子を持たない正整数 $c$ を用いて $\dfrac{b\sqrt{c}}{a}$ と書けるので,$a+b+c$ を求めよ.
半角数字で入力してください。
三角形$ABC$において,$AB,BC$の中点をそれぞれ$M,N$とし,重心を$G$とします.三角形$AGM$の外接円と三角形$CGN$の外接円が再び交わる点を$P$とすると以下が成立しました.$$GP//BC AB=5 AC=4$$このとき線分$GP$の長さの二乗は互いに素な正整数$a,b$を用いて$\dfrac{a}{b}$と表せるので,$a +b$の値を解答して下さい.
例)ひらがなで入力してください。