公開日時: 2025年7月22日9:17 / ジャンル: 数学 / カテゴリ: 算数 / 難易度: / ジャッジ形式: ジャッジなし
ある数は2の倍数であり、1を引くと3の倍数である。この数を、小さい順で10個答えよ
数字を10個
公開日時: 2025年7月15日18:22 / ジャンル: 数学 / カテゴリ: 算数 / 難易度: / ジャッジ形式: 採点者ジャッジ
プロジェクト空間 $\mathbb{P}^2$ 内の射影多様体 $V = Z(x^3 + y^3 + z^3) \subset \mathbb{P}^2$ を考える。この多様体が非特異であることを示しなさい。
証明してください。
公開日時: 2025年4月26日9:00 / ジャンル: 数学 / カテゴリ: 算数 / 難易度: / ジャッジ形式: 採点者ジャッジ
聖くんと光くんはトランプゲームを行うことにした.
なお,$1$ から $13$ までの数字が書かれたトランプをそれぞれ四枚ずつ用いる.
ルールは以下の通り.
- 聖くんはトランプを $1$ 枚から$3$ 枚まで引くことができる.
- 光くんは幾つかの質問をして,聖くんが引いたトランプに書かれた数字を回答する.
光くん「書かれた数字の和を教えて」
聖くん「$31$ だよ」
光くん「うーん難しいな……なにかヒントくれない?」
聖くん「トランプに書かれた数字の積を求めたら、各位の和は $2$ になったよ」
光くんが引いたトランプの目として考えられるものを全て求めなさい。
答えが1,2,4の場合は(1,2,4)と入力して下さい.(小さい順に)
公開日時: 2025年4月4日17:09 / ジャンル: 数学 / カテゴリ: 算数 / 難易度: / ジャッジ形式: 自動ジャッジ
以下の無限級数の値を求めてください。
$$ S = \sum_{n=1}^{\infty} \frac{1}{n^2 \binom{2n}{n}} $$
ここで、
$$
\begin{pmatrix} 2n \\ n \end{pmatrix}=\frac{(2n)!}{(n!)^2}
$$は中央二項係数です。
$\frac{9^2}{5}$の場合は、9^2/5のように解答してください。
公開日時: 2025年3月26日16:37 / ジャンル: 数学 / カテゴリ: 算数 / 難易度: / ジャッジ形式: 自動ジャッジ
$327498^{789798}の1000000桁を求めよ。$
半角英数字で解答してください。
公開日時: 2025年3月26日15:58 / ジャンル: 数学 / カテゴリ: 算数 / 難易度: / ジャッジ形式: 自動ジャッジ
56の10000乗を求めなさい。
半角英数字で解答してください。(17709桁)
公開日時: 2025年3月26日15:19 / ジャンル: 数学 / カテゴリ: 算数 / 難易度: / ジャッジ形式: 自動ジャッジ
次の広義積分の値を求めなさい。
$$ \int_0^\infty \sin(x^2) dx $$
$\sqrt\frac{1}{2}$の場合は√1/2と解答してください。
公開日時: 2025年1月31日9:38 / ジャンル: 数学 / カテゴリ: 算数 / 難易度: / ジャッジ形式: 自動ジャッジ
工夫して答えなさい。
99×99=?
公開日時: 2025年1月2日18:15 / ジャンル: 数学 / カテゴリ: 算数 / 難易度: / ジャッジ形式: 自動ジャッジ
${}$ 西暦2025年問題第2弾です。第1弾に引き続き虫食算で、今回は掛け算にしてみました。数学的手法(約数や倍数、偶奇性や剰余、不等式による絞り込み、などなど)を適宜用いることで面倒な場合分けや仮置きを軽減できるよう仕込んでいるのは変わりません。パズル的に解くのもよし、数学的にゴリゴリ解くのもよし、どうぞお好きなようにお楽しみください!
${}$ 解答は上2行を「被乗数×乗数」の形で入力してください。
(例) $2025 \times 102 = 206550$ → $\color{blue}{2025 \text{×} 102}$
入力を一意に定めるための処置です。数字は半角で、「×」の演算記号はTeX記法(\times)でも、絵文字や環境依存文字でもなく、全角記号の「×」でお願いします。空白(スペース)も入れる必要はありません。