公開日時: 2020年6月11日11:13 / ジャンル: 数学 / カテゴリ: 算数 / 難易度: / ジャッジ形式: 自動ジャッジ
$1\thicksim6$までの数字を$1$回ずつ使って空欄を埋め以下の等式を成立させてください。解が存在しない場合はその旨を答えてください。
$(1)\square\square\times\square=\square\square\square$
$(2)\square\square+\square\square=\square\square$
1行目に$(1)$、2行目に$(2)$の解を入力してください。
等式をすべて半角で入力してください。ただし、「$\times$」はx(小文字のエックス)で代用するものとします。
存在しない場合は-1を入力してください。
また、解が複数存在する場合はどれを回答してもかまいません。
(例)
$3\times7=21$と入力する場合 3x7=21
$3+7=21$と入力する場合 3+7=10
公開日時: 2020年6月2日0:40 / ジャンル: 数学 / カテゴリ: 算数 / 難易度: / ジャッジ形式: 自動ジャッジ
ピザが1枚ずつ乗った $N\;(\geq 2)$ 枚の皿が横一列に並んでいます.ピザには表と裏があり,表には具がのっていて,裏にはのっていません.はじめ,すべての皿のピザは表が上になっています.これらのピザに対して,次の操作Xを考えます.
操作X:
この操作Xを$\;N-1\;$回繰り返すと,1枚の皿にピザの塔ができます.操作Xの $N-1$ 回の繰り返しをピザの調理ということにします.ピザの塔を構成するピザを,上から順に$\;P_i\; (i=1,\cdots, N)\;$とし,$P_i$ が表を上に向けているとき「表」,裏を上に向けているとき「裏」と書くことにすると,ピザの塔は「裏裏裏表」のように表すことができます.
$N=6$とします.「裏裏裏裏表表」というピザの塔ができるような調理は何通りあるか答えなさい.
半角数字で入力してください.