One to Six

sapphire15 自動ジャッジ 難易度: 数学 > 算数
2020年6月11日11:13 正解数: 14 / 解答数: 16 (正答率: 87.5%) ギブアップ不可

全 16 件

回答日時 問題 解答者 結果
2020年8月14日16:21 One to Six tsukasa
正解
2020年7月2日14:12 One to Six green+
正解
2020年6月19日18:16 One to Six neonightlife
正解
2020年6月17日9:10 One to Six annnnnnnnnnnnna
正解
2020年6月13日18:35 One to Six baba
正解
2020年6月12日11:33 One to Six mayuco
正解
2020年6月11日21:06 One to Six ゲスト
正解
2020年6月11日19:33 One to Six mochimochi
正解
2020年6月11日14:56 One to Six shakayami
正解
2020年6月11日14:52 One to Six shakayami
不正解
2020年6月11日11:58 One to Six okapin
正解
2020年6月11日11:34 One to Six ofukufukufuku
正解
2020年6月11日11:26 One to Six tkg06269476
正解
2020年6月11日11:25 One to Six ebiyuu1121
正解
2020年6月11日11:23 One to Six ebiyuu1121
不正解
2020年6月11日11:22 One to Six ゲスト
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

50629の素因数分解

masorata 自動ジャッジ 難易度:
4月前

18

問題文

$x^4+4$ を因数分解せよ。また、この結果を用いて $50629$ を素因数分解せよ。

解答形式

50629の素因数を小さい順に1,2,3......行目に半角数字で入力せよ。

求面積問題3

Kinmokusei 自動ジャッジ 難易度:
3月前

7

問題文

図中の青い線分の長さはすべて10,赤で示した角はすべて等しいです。
このとき、緑色部分(凹四角形)の面積を求めてください。
解答形式に注意!

解答形式

$答えはA\sqrt{B}の形になります。(A,Bは自然数)$
$A+Bを解答してください。$
$<注意>$
$根号の中が最小となるようにしてください。$
$半角数字で解答してください。$
$例 : green area=10\sqrt{8}=20\sqrt{2}→A=20,B=2→22 と解答$

都合のいいn

masorata 自動ジャッジ 難易度:
4月前

32

問題文

$n$ を整数とする。$x$ の整式

$$
x^4+(3n+2)x^3+(n^2+5)x^2+nx-1
$$

が整数係数の範囲でさらに因数分解できるような $n$ をすべて求めよ。

解答形式

$n$の値を小さい順に1,2,3,......行目にすべて半角で入力せよ。たとえば $n=-123, 45, 678$ と解答する場合、1行目に「-123」、2行目に「45」、3行目に「678」と入力せよ。

求面積問題2

Kinmokusei 自動ジャッジ 難易度:
4月前

7

問題文

緑色の線分の長さは1です。
このとき、円の面積を求めてください。
図中の赤点はそれを含む線分の中点です。

解答形式

答えは(分数)×πの形になります。
分子を1行目に、分母を2行目に半角数字で入力してください。
ただし、既約分数の形で解答してください。
例: (10/3)π → 1行目に10、2行目に3

求面積問題

Kinmokusei 自動ジャッジ 難易度:
4月前

9

問題文

青い三角形の面積が6のとき、外側の正方形の面積を求めてください。
なお、正方形と円は図中の赤で示した点で接します。

解答形式

正方形の面積を半角数字で入力してください。

求面積問題4

Kinmokusei 自動ジャッジ 難易度:
2月前

4

問題文

半径比が1:2の同心円と直角三角形です。
赤い線分の長さが12のとき、緑の三角形の面積を求めてください。

解答形式

半角数字で解答してください。

求角問題2

Kinmokusei 自動ジャッジ 難易度:
4月前

7

問題文

半円2つが図のように配置されています。
赤い線分と青い線分は長さの比が1:2です。
このとき、Xの角度を求めてください。

解答形式

半角数字で入力してください。
「度」や「°」は付けないでください。
例:X=57° → 57

求長問題2

Kinmokusei 自動ジャッジ 難易度:
3月前

6

問題文

直径10の半円中に、直径の和が10となる2つの半円を図のように配置します。点Aを大半円の弧上にとり、線分AB,ACと小半円の交点をD,Eとします。
$BD^2+DE^2+EC^2$が最小となるようにしたとき、その最小値を求めてください。

解答形式

半角数字で解答してください。

hinu積分03

hinu 自動ジャッジ 難易度:
4月前

11

問題文

定積分

$$
\int_0^1 (\sqrt[7]{1-x^{11}}-\sqrt[11]{1-x^{7}})dx
$$

を求めよ。

解答形式

値は半角数字で記述せよ。無理数などを用いたい場合は必要ならばTeX記法により記述せよ。

求面積問題7

Kinmokusei 自動ジャッジ 難易度:
2月前

7

問題文

三角形の外側に3つの正方形を図のように作りました。橙・緑・紫の線分の長さを3辺の長さとする三角形(赤い三角形)の面積が57のとき、元の三角形(青い三角形)の面積を求めてください。

解答形式

半角数字で解答してください。

Square Taxi

sapphire15 自動ジャッジ 難易度:
4月前

152

問題文

相異なる正の整数$a, b,c, d,k$が
$$a^2 + b^2 = c^2 + d^2 = k$$
を満たすものとします。$k$の最小値を求めてください。

解答形式

半角数字で回答してください。

備考

  • 6/10 14:26 問題文を「非負整数」→「正の整数」に修正しました。

Second Number

okapin 自動ジャッジ 難易度:
4月前

16

問題文

$\sqrt[10] {10}$ の小数第一位の値を求めよ。
ただし, $\log_{10}{2}=0.3010$ とする。

解答形式

答えを半角数字で入力してください。