整数問題①

lucy 自動ジャッジ 難易度: 数学 > 高校数学
2020年6月8日1:02 正解数: 20 / 解答数: 21 (正答率: 95.2%) ギブアップ不可

全 21 件

回答日時 問題 解答者 結果
2024年6月6日22:44 整数問題① uran
正解
2024年3月13日11:15 整数問題① ゲスト
正解
2024年2月29日11:30 整数問題① Prime-Quest
正解
2024年1月24日9:44 整数問題① natsuneko
正解
2024年1月10日16:53 整数問題① 326_math
正解
2023年12月17日15:02 整数問題① nmoon
正解
2021年10月28日15:46 整数問題① tima_C
正解
2021年9月14日18:31 整数問題① naoperc
正解
2021年5月14日22:33 整数問題① Michael
正解
2021年1月8日11:43 整数問題① Benzenehat
正解
2021年1月5日14:08 整数問題① watero00
正解
2020年8月31日4:24 整数問題① lemon_math_tea
正解
2020年6月27日14:15 整数問題① ゲスト
正解
2020年6月22日1:11 整数問題① pichipichipizza
正解
2020年6月14日18:56 整数問題① okapin
正解
2020年6月11日23:41 整数問題① mochimochi
正解
2020年6月10日19:23 整数問題① ゲスト
正解
2020年6月9日2:12 整数問題① sapphire15
正解
2020年6月9日2:11 整数問題① sapphire15
不正解
2020年6月8日4:04 整数問題① masorata
正解
2020年6月8日2:00 整数問題① baba
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

整数問題②

lucy 自動ジャッジ 難易度:
4年前

13

問題文

$p^2+q^2+r^2+s^2=t^4+1$を満たす素数$(p,q,r,s,t)$の組を全て求めよ。但し$p\leq q\leq r\leq s$とする。

解答形式

一行目に式を満たす組が何組あるか答えよ。また、そのような組の中で、$t$が最大であるものについて、$p,q,r,s,t$の値をそれぞれ2行目、3行目、4行目…へ記入せよ。いずれも数字のみ記入せよ。

(本当は解き方まで見たいですが、個別判定が大変なのでこの形式にします。できれば、なぜそうなるかもしっかり考えてください。)

Thirteen Ones

halphy 自動ジャッジ 難易度:
4年前

24

問題文

$n\geq 2$ を自然数とする。$2$ 進数表記で
\begin{equation}
N=\underbrace{11\cdots 11}_n \underbrace{00\cdots 00} _ {n-1} {} _ {(2)}
\end{equation}と表される自然数 $N$ を考える。$n=13$ のとき,$N$ の正の約数の総和を求めなさい。

解答形式

$2$ 進数で答えなさい。

hinu積分01

hinu 自動ジャッジ 難易度:
4年前

16

問題

定積分

$$
\int_0^{\pi/2}\dfrac{\cos{x}-x}{1+\sin{x}}dx
$$

を計算せよ。

回答形式

半角数字で答えよ。無理数や記号等を用いる場合はTeX形式で入力せよ。

求面積問題8

Kinmokusei 自動ジャッジ 難易度:
3年前

13

問題文

△ABCと点Pをとり、△ABP, △BCP, △CAPの重心をそれぞれ$G_1, G_2, G_3$とします。青で示した3つの三角形の面積の和が10のとき、$△G_1G_2G_3$(赤い三角形)の面積を求めてください。

解答形式

半角数字で解答してください。

求面積問題14

Kinmokusei 自動ジャッジ 難易度:
3年前

12

問題文

周の長さが30である長方形ABCDがあります。辺CD上に∠APB=90°となるような点Pをとれるとき、長方形ABCDの面積の最大値を求めてください。

解答形式

半角数字で解答してください。

2元7次不定方程式

zyogamaya 自動ジャッジ 難易度:
3年前

12

問題文

$x,y$を整数とする。不定方程式$x^7+17y=3$の解$x$をすべて求めよ。

解答形式

答えは、$n$を整数とし、
$x=[ab]n+[cd]$
($a,b,c,d$は一桁の自然数)
という形をしています。$a,b,c,d$の値を求め、$abcd$(4桁の自然数)を入力してください。

hinu問題02

hinu 自動ジャッジ 難易度:
4年前

38

問題文

$a,b,c$ を実数とする。次の連立方程式を解け。

$$
a^2-4b-1=0\\
b^2-8c+28=0\\
c^2-6a+2=0\\
$$

解答形式

a,b,cを半角数字として(a,b,c)で解答してください。無理数などを使いたい場合はTeXコマンドを使用してください。

求面積問題3

Kinmokusei 自動ジャッジ 難易度:
4年前

12

問題文

図中の青い線分の長さはすべて10,赤で示した角はすべて等しいです。
このとき、緑色部分(凹四角形)の面積を求めてください。
解答形式に注意!

解答形式

$答えはA\sqrt{B}の形になります。(A,Bは自然数)$
$A+Bを解答してください。$
$<注意>$
$根号の中が最小となるようにしてください。$
$半角数字で解答してください。$
$例 : green area=10\sqrt{8}=20\sqrt{2}→A=20,B=2→22 と解答$

[B] Triangles 1

halphy 自動ジャッジ 難易度:
3年前

16

問題文

$k>0$ を整数の定数とする。以下の条件

$$
{\rm AB}=8, {\rm AC}=k, \angle {\rm ABC}=60^{\circ}
$$

を満たす三角形 ${\rm ABC}$ が存在するような整数 $k$ の最小値は $\fbox{\text{ア}}$ である。

また,条件を満たす三角形 ${\rm ABC}$ が一意的に存在するような整数 $k$ の最小値は $\fbox{イ}$ である。

ただし,互いに合同であるような $2$ つの三角形は区別しない。

解答形式

空欄 $\fbox{ア}$ 〜 $\fbox{イ}$ には,半角数字 0 - 9 のいずれかが当てはまります。$\fbox{ア}$ 〜 $\fbox{イ}$ に当てはまるものを改行区切りで入力してください。

[A] Don't Expand It!

masorata 自動ジャッジ 難易度:
3年前

40

問題文

$$
1+(2^1+1)(2^2+1)(2^4+1)(2^8+1)(2^{16}+1)(2^{32}+1)
$$

は、$2$ で最大何回割り切れるか。

解答形式

半角数字のみで答えよ。
たとえば $5555$ 回割り切れると答えるのであれば1行目に
5555
と入力せよ。

求面積問題5

Kinmokusei 自動ジャッジ 難易度:
3年前

8

問題文

正方形が2つ、図のように配置されています。赤い線分の長さが20のとき、緑で示した四角形の面積を求めてください。
ただし、図中の青点はそれぞれの正方形の対角線の交点です。

解答形式

半角数字で解答してください。

求値問題3

Kinmokusei 自動ジャッジ 難易度:
3年前

14

問題文

$x_1,x_2,\ldots,x_{24}$は正の実数とします。このとき、次の式の最小値を求めてください。
$$
\left(\sum_{n=1}^{24}\frac{n}{x_n}\right)\times\left(\sum_{n=1}^{24}nx_n\right)
$$

解答形式

半角数字で解答してください。