アップデートのお知らせ (2021年1月20日13:54)
他のユーザーをフォローできるようになりました!今後のアップデートにて、フォローしているユーザーの問題の一覧を見れるようになる予定です。
halphy

halphy

Twitter ID: @hal2000_phy
はるふぃです。
はるふぃです。

統計情報

フォロー数8
フォロワー数2
投稿した問題数35
コンテスト開催数4
コンテスト参加数4
解答された数504
いいねされた数32
解答した問題数183
正解した問題数128
正解率69.9%

人気問題

クソなぞふぃ #01

halphy 自動ジャッジ 難易度:
7月前

54

問題文

アマゾン川を逆流する古いロッカーってな〜んだ?

※これはクソなぞなぞです。

くそなぞふぃ #09

halphy 自動ジャッジ 難易度:
2月前

50

問題文

雪崩が起きた山がたくさんあった森にある駅ってな〜んだ?

※これはクソなぞなぞです。初めての方は
https://hamukichi.hatenablog.jp/entry/2020/04/17/203824
などをご覧ください。

解答形式

すべてひらがなで入力してください。

クソなぞふぃ #03

halphy 自動ジャッジ 難易度:
7月前

41

問題文

翼がほしいときに言うセリフは?
ただし相手はアメリカ人だとします。

※これはクソなぞなぞです。

寿司

halphy 自動ジャッジ 難易度:
7月前

38

解答形式

ひらがなで入力してください。

クソなぞふぃ #04

halphy 自動ジャッジ 難易度:
7月前

37

問題文

最近、重いものを運搬するときに頭に乗せて運ぶ人をよく見かけますね。
それでは、特に頭に本を乗せて運ぶ人のことをなんというでしょう?

※これはクソなぞなぞです。

クソなぞふぃ #07

halphy 自動ジャッジ 難易度:
6月前

35

問題文

ロシアの首都で人をハンバーガーショップに誘うとき何と言うでしょう?

*7/19 1:03 別解を追加しました。

※これはクソなぞなぞです。

新着問題

[B] Triangles 1

halphy 自動ジャッジ 難易度:
2月前

12

問題文

$k>0$ を整数の定数とする。以下の条件

$$
{\rm AB}=8, {\rm AC}=k, \angle {\rm ABC}=60^{\circ}
$$

を満たす三角形 ${\rm ABC}$ が存在するような整数 $k$ の最小値は $\fbox{ア}$ である。

また,条件を満たす三角形 ${\rm ABC}$ が一意的に存在するような整数 $k$ の最小値は $\fbox{イ}$ である。

ただし,互いに合同であるような $2$ つの三角形は区別しない。

解答形式

空欄 $\fbox{ア}$ 〜 $\fbox{イ}$ には,半角数字 0 - 9 のいずれかが当てはまります。$\fbox{ア}$ 〜 $\fbox{イ}$ に当てはまるものを改行区切りで入力してください。

[F] Slow and Steady

halphy 自動ジャッジ 難易度:
2月前

2

問題文

$n$ を自然数とする。置換 $\sigma\in \mathfrak{S}_n$ に対して,$\sigma$ の近道度 $m(\sigma)$ を次のように定義する。

  • $\sigma$ を互いに素な(共通元をもたない)巡回置換の積に表したとき,各巡回置換の長さの積の逆数を $m(\sigma)$ とする。(太字部分は19:42追記)

例えば $\sigma=(1 4 2)(5 6 7)(3)\in \mathfrak{S}_7$ なら,$\sigma$ は長さ $3, 3, 1$ の巡回置換からなるから,$\sigma$ の近道度 $m(\sigma)$ は

\[
m(\sigma)=\frac{1}{3\cdot 3\cdot 1}=\frac{1}{9}
\]

である。自然数 $n$ に対して,$\{1,\cdots, n\}$ の置換(これは $n!$ 通りある)の近道度の平均を

\[
f_n=\frac{1}{n!}\sum_{\sigma\in \mathfrak{S}_n} m(\sigma)
\]

とおく。

\[
f_1=1, \; f_2=\frac{\fbox{ア}}{\fbox{イ}}, \; f_4=\frac{\fbox{ウエオ}}{\fbox{カキク}}
\]

であり,

\[
\sum_{n=0}^{\infty} f_n=\fbox{ X }
\]

である(級数が収束することは証明なしに認めてよい)。ただし $f_0=1$ と約束する。

※ $\mathfrak{S}_n$ は $n$ 次対称群を表す(19:03追記)。

解答形式

$\fbox{ア}$ 〜 $\fbox{ク}$ には 0 - 9 の数字が当てはまります。$\fbox{ X }$にはある実数が当てはまります。空欄のある分数はすべて既約です。

  • 1行目 には $\fbox{ア}$ に当てはまる数を半角で入力してください。
  • 2行目 には $\fbox{イ}$ に当てはまる数を半角で入力してください。
  • 3行目 には $\fbox{ウエオ}$ に当てはまる数を半角で入力してください。
  • 4行目 には $\fbox{カキク}$ に当てはまる数を半角で入力してください。
  • 5行目 には $\fbox{ X }$ に当てはまる数を入力します。答えを $10$ 進小数で表し,小数第2位を四捨五入して小数第1位まで求めてください。例えば,$9.876\cdots $ が答えになる場合は 9.9 と解答してください。

ヒント

  • $f_0,\cdots, f_{n-1}$ を使って $f_n$ を表すことができます。
  • $f_n$ の母関数を $f(t)=\displaystyle{\sum_{n=0}^{\infty}} f_nt^n$ とおくと,$f(t)$ はとある微分方程式を満たします。

[E] Triangles 2

halphy 自動ジャッジ 難易度:
2月前

5

問題文

$n$ を正の整数とするとき,以下の条件を満たす三角形の総数 $T_n$ を求めなさい。ただし,互いに合同であるような $2$ つの三角形は区別しない。

  • 条件:三角形の辺の長さはすべて $n$ 以下の整数である。

例えば,$n=1$ のときには,辺の長さが $1$ の正三角形を作ることができる。これ以外に条件を満たすような三角形は存在しない。よって $T_1=1$ である。

$n$ が奇数のとき

$$
T_n=\frac{\fbox{ア}}{\fbox{イウ}}n^3+\frac{\fbox{エ}}{\fbox{オ}}n^2+\frac{\fbox{カ}}{\fbox{キク}}n+\frac{\fbox{ケ}}{\fbox{コ}}
$$

である。

解答形式

空欄 $\fbox{ア}$ 〜 $\fbox{コ}$ には,半角数字 0 - 9 ,記号 - のいずれかが当てはまります。$\fbox{ア}$ 〜 $\fbox{コ}$ に当てはまるものを改行区切りで入力してください。分数は既約分数の形で答えてください。

くそなぞふぃ #09

halphy 自動ジャッジ 難易度:
2月前

50

問題文

雪崩が起きた山がたくさんあった森にある駅ってな〜んだ?

※これはクソなぞなぞです。初めての方は
https://hamukichi.hatenablog.jp/entry/2020/04/17/203824
などをご覧ください。

解答形式

すべてひらがなで入力してください。

[C] A Downward Tower

halphy 自動ジャッジ 難易度:
4月前

1

問題文

$n=0,1,\cdots$ に対し,$I_n$を
$$
I_n=\sum_{k=0}^{\infty}\frac{1}{2^{k}k!(2n+2k-1)!!}
$$で定める。ただし $(-1)!!=1$ とする。この級数は収束することが知られている(例えば,ダランベールの判定法を適用すればよい)。特に
$$
I_0+I_1=\fbox{ア}
$$である。また,$\{I_n\}$ は漸化式
$$
I_{n-1}-I_{n+1}=(\,\fbox{イ}\,n-\fbox{ウ}\,)I_n\quad(n=1,2,\cdots)
$$を満たし
$$
\lim_{n\to\infty}\frac{I_{n+1}}{I_n}=\fbox{エ}
$$が成り立つ。これらの結果を用い,漸化式を変形すると
$$
1+\cfrac{1}{3+\cfrac{1}{5+\cfrac{1}{7+\cfrac{1}{\ddots}}}}=\frac{\fbox{オ}^{\fbox{カ}}+\fbox{キ}}{\fbox{ク}^{\fbox{ケ}}-\fbox{コ}}
$$が得られる。ただし $\fbox{オ}\neq\fbox{キ}$ とする。

注意

自然数 $n\geq 1$ に対し,$n!!$ は $1$ 個とばしの階乗を表す。例えば,$n$ が奇数のとき
$$
n!!=n(n-2)(n-4)\cdots 3\cdot 1
$$である。

解答形式

空欄 $\fbox{ア}$ 〜 $\fbox{コ}$ には,半角数字 0 - 9 ,記号 - ,円周率 π ,自然対数の底 e のいずれかが当てはまります。$\fbox{ア}$ 〜 $\fbox{コ}$ に当てはまるものを改行区切りで入力してください。

[E] Centrosymmetry

halphy 自動ジャッジ 難易度:
4月前

4

問題文

$P$ を $n\times n$ 行列とする。$P$ の第 $(i, j)$ 成分と第 $(n-i+1, n-j+1)$ 成分がつねに一致するとき,$P$ を点対称行列と呼ぶことにする。例えば $n=4$ なら,$P$ は一般に

$$
P=\begin{pmatrix} a & b & h & g \\ c & d & f & e \\ e & f & d & c \\ g& h & b & a \end{pmatrix}
$$

という形をしている。$E'$ を $4\times 4$ の単位行列とし,$4\times 4$ 行列 $J'$ を

$$
J'=\begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}
$$

で定義する。

(1) 一般の $4\times 4$ 行列 $X$ に対して,$XJ'$ の $(\fbox{ア},\fbox{イ})$ 成分と $X$ の $(1,2)$ 成分は一致する。また,$J'X$ の $(\fbox{ウ},\fbox{エ})$ 成分と $X$ の $(1,2)$ 成分は一致する。よって, $4\times 4$ 行列 $P$ が点対称行列であることは,$J'PJ'=P$ が成り立つことと同値である。

(2) $E$ を $2\times 2$ の単位行列とし,$2\times 2$ 行列 $J$ を

$$
J=\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}
$$

で定義する。$4\times 4$ 点対称行列 $P$ が,ある $2\times 2$ 行列 $A,B,C,D$ を用いて

$$
P=\begin{pmatrix} A & B \\ C & D \end{pmatrix}
$$

と表せたとする。(1) と同様の考察より,$D=JAJ, B=JCJ$ である。$4\times 4$ 行列 $Q$ を

$$
Q=\frac{1}{\sqrt{2}}\begin{pmatrix} E & -J \\ J & E \end{pmatrix}
$$

で定めると,$Q^{\rm T}Q=\fbox{オ}$ であり

$$
Q^{\rm T}PQ=\begin{pmatrix} \fbox{カ}+\fbox{キク} & \fbox{ケ} \\ \fbox{コ} & \fbox{サシス}-\fbox{セソ} \end{pmatrix}
$$

が成り立つ。

(3) $p$ を実定数とする。(2) の結果を利用して,行列

$$
P=\begin{pmatrix} 0 & p & 0 & 1-p \\ 0 & p^2 & 1-p & p(1-p) \\ p(1-p) & 1-p & p^2 & 0 \\ 1-p & 0 & p & 0 \end{pmatrix}
$$

の固有値を求めよう。$p=\cfrac{13}{15}$ のとき,$P$ の固有値は大きい順に

$$
\fbox{タ}, \frac{\fbox{チ}}{\fbox{ツ}}, \frac{\fbox{テ}}{\fbox{トナ}}, \frac{\fbox{ニ}}{\fbox{ヌネノ}}
$$

である。

解答形式

空欄 $\fbox{ア}$ 〜 $\fbox{ノ}$ には,半角数字 0 - 9 ,記号 - ,4×4行列 E', J' ,2×2行列 E, J, A, C, O のいずれかが当てはまります(B, Dを使って解答することはできません。O は零行列を表します)。$\fbox{ア}$ 〜 $\fbox{ノ}$ に当てはまるものを改行区切りで入力してください。分数はこれ以上約分できない形で解答してください。

開催したコンテスト

コンテスト名 日程 作成者
KOH Mathematical Contest #4 2020-11-06 18:00
〜 2020-11-09 00:00
halphy halphy hinu hinu ofukufukufuku ofukufukufuku masorata masorata
KOH Mathematical Contest #3 2020-08-30 18:00
〜 2020-08-31 00:00
halphy halphy hinu hinu ofukufukufuku ofukufukufuku wa1t_sush1 wa1t_sush1
KOH Mathematical Contest #2 2020-08-15 18:00
〜 2020-08-16 00:00
halphy halphy hinu hinu ofukufukufuku ofukufukufuku
KOH Mathematical Contest #1 2020-06-28 18:00
〜 2020-06-29 00:00
halphy halphy hinu hinu ofukufukufuku ofukufukufuku

参加したコンテスト

順位 コンテスト名 得点 終了日時 作成者
7 第2回まそらた杯 45 2020年12月6日18:00 masorata masorata
1 Okapin Mathematical Contest 2 2100 2020年11月2日0:00 okapin okapin Benzenehat Benzenehat
5 第1回まそらた杯 80 2020年10月18日22:00 masorata masorata
5 Okapin Mathematical Contest 100 2020年9月13日0:00 okapin okapin EdamakiD EdamakiD fusshi fusshi kaicho kaicho