okapin

Twitter ID: @okapin0612

プロフィール

okapin

統計情報

問題投稿数14
解答された数192
いいねされた数14
解答した数156
正解した数151
正解率96.8%

人気問題

WP

okapin 自動ジャッジ 難易度:
4月前

35

Many Circles

okapin 自動ジャッジ 難易度:
5月前

35

解答形式

ひらがな6文字で入力してください。

[A] Natural Number

okapin 自動ジャッジ 難易度:
2月前

22

問題文

$\dfrac{n^2+2020}{2n}$が自然数となるような自然数$n$の総和を求めよ。

解答形式

解答を半角数字で入力してください。

二等分

okapin 自動ジャッジ 難易度:
5月前

19

問題文

中心$O$, 直径$AB$とする円の$A,B$以外の円周上の点$C$を取り, $\angle BAC=\theta \ (0^\circ<\theta <90^\circ)$ とする。
このとき, 線分$OD$が線分$AC$によって二等分されるような点$D$が円周上に取れるような$\theta$の取りうる範囲を求めよ。

解答形式

求める$\theta$の範囲は$a^\circ<\theta\leq b^\circ$となります。1行目に$a$, 2行目に$b$を半角数字で入力してください。

Second Number

okapin 自動ジャッジ 難易度:
5月前

16

問題文

$\sqrt[10] {10}$ の小数第一位の値を求めよ。
ただし, $\log_{10}{2}=0.3010$ とする。

解答形式

答えを半角数字で入力してください。

Almost Linear

okapin 自動ジャッジ 難易度:
5月前

11

問題文

$n$を2以上の整数とし, $f(x)=\sqrt[n]{x^n+nx^{n-1}} (x\geq0)$を考える。

$(1)$ $x$を正の整数とするとき, $f(x)$の値が整数でないことを示せ。

$(2)$ $y=f(x)$, $x$軸, $x=m-1$ ($m$は正の整数) で囲まれた領域内(境界線上も含む)の格子点の数を求めよ。

解答形式

$(2)$ で $m=100$ のときの答えを半角数字で入力してください。

新着問題

[E] minimum value (hard)

okapin 自動ジャッジ 難易度:
27日前

5

問題文

$a,b$を$a>1,b>1$を満たす実数とする。
$\theta$が$0\leq\theta<2\pi$の範囲を動くとき$f(\theta)=\sqrt{a^2-2a\cos\theta+1}+\sqrt{b^2-2b\sin\theta+1}$の最小値が$\sqrt{a^2+b^2}$となるような$(a,b)$の存在範囲を$ab$平面に図示したとき、その領域の面積を求めよ。

解答形式

整数または既約分数で答えてください。
半角で入力してください。

[F] endless sequence

okapin 自動ジャッジ 難易度:
27日前

7

問題文

(1)$p$を奇素数とし、$\frac{1}{p}$を2進数で表示したときの循環節(※)が2以上8以下であるような$p$は6つ存在する。フェルマーの小定理を用いて$p$とその$p$に対する$\frac{1}{p}$の循環節の長さの関係を導き、6つの$p$の値を全て答えよ。

(2)$p$を奇素数とし、$\frac{1}{p}$を2進数で表示したときに最大で1が連続して並ぶ個数を$f(p)$とおく。例えば$\frac{1}{3}=0.01010…_{(2)}$より$f(3)=1$である。(1)を満たす$p$の中で$f(p)$が最大となるのは$p$がいくらのときか。Midyの定理を用いることによって求め、その値を答えよ。


(※)循環節とは、循環小数の繰り返される数字の列のうちその長さが最小でありかつその先頭が最も先に来るようなもののことである。例えば$\frac{1}{3}=0.01010…_{(2)}$となり、このときの循環節は$01$であり、$0101$や$10$は循環節とならない。


解答形式

(1)の全ての答えを小さい順に1~6行目に半角数字で入力してください。また、(2)の答えを7行目に半角数字で入力してください。

[A] minimum value (easy)

okapin 自動ジャッジ 難易度:
27日前

9

問題文

原点$O$とする$xy$平面上で点$(3,2)$を通る傾き負の直線と$x$軸,$y$軸との交点をそれぞれ$A,B$とするとき、$\triangle OAB$の面積の最小値を求めよ。

解答形式

整数または既約分数で答えてください。
半角で入力してください。

[D] Stability

okapin 自動ジャッジ 難易度:
2月前

8

問題文

古典制御論においてシステムの特性が線形微分方程式で表される場合、伝達関数は有理関数$$G(s)=\frac{b_ms^m+b_{m-1}s^{m-1}+…+b_1s+b_0}{a_ns^n+a_{n-1}s^{n-1}+…+a_1s+a_0}$$で与えられる。このときの分母多項式$$a_ns^n+a_{n-1}s^{n-1}+…+a_1s+a_0$$は複素数の範囲でn個の根を持ち、これらの実部が全て負であれば漸近安定、非正であればリアプノフ安定となる。

まずは分母多項式が2次の場合の安定条件を考える。

(1) $a,b$を実数とするとき、2次方程式 $x^2+ax+b=0$ の2解の実部が共に非正となるような$a,b$の条件を次の中から選べ。

  1. $a\geq0$かつ$b\geq0$
  2. $a\geq0$かつ$b\leq0$
  3. $a\leq0$かつ$b\geq0$
  4. $a\leq0$かつ$b\leq0$

次に分母多項式が4次の場合の安定条件を考える。

以下では、$p,q$を実数とし、4次方程式$$x^4+(p+q)x^3+(6-p^2-q^2)x^2+(p+q)x+1=0…(*)$$を考える。

(2) (*)の4解が全て実数解であり、かつ(実部が)全て非正となるような$p,q$の組について以下のうちどちらが正しいか。

  1. 存在する。
  2. 存在しない。

(3) (*)の4解の実部が全て非正となるような$p,q$の条件を求め、そのような$p,q$に対する$pq$の最大値を求めよ。

解答形式

(1)~(3)の解答を半角数字で改行区切りで解答してください。
ただし、(1)の解答は1から4の中から選び、(2)の解答は1,2の中から選び、(3)の解答は$pq$の最大値のみ答えること。

[A] Natural Number

okapin 自動ジャッジ 難易度:
2月前

22

問題文

$\dfrac{n^2+2020}{2n}$が自然数となるような自然数$n$の総和を求めよ。

解答形式

解答を半角数字で入力してください。

WP

okapin 自動ジャッジ 難易度:
4月前

35

開催したコンテスト

コンテスト名 日程 作成者
Okapin Mathematical Contest 2 2020-10-30 20:00
〜 2020-11-02 00:00
okapin okapin Benzenehat Benzenehat
Okapin Mathematical Contest 2020-09-12 18:00
〜 2020-09-13 00:00
okapin okapin fusshi fusshi EdamakiD EdamakiD kaicho kaicho

参加したコンテスト

順位 コンテスト名 得点 終了日時 作成者
5 KOH Mathematical Contest #4 150 2020年11月9日0:00 ofukufukufuku ofukufukufuku hinu hinu halphy halphy masorata masorata
3 KOH Mathematical Contest #1 1100 2020年6月29日0:00 ofukufukufuku ofukufukufuku hinu hinu halphy halphy
4 Pororocca Tutorial Contest 850 2020年6月14日0:00 pororocca pororocca