$\sqrt[10] {10}$ の小数第一位の値を求めよ。 ただし, $\log_{10}{2}=0.3010$ とする。
答えを半角数字で入力してください。
与えられた近似値以外は使ってはいけません。
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
三角形の外側に3つの正方形を図のように作りました。橙・緑・紫の線分の長さを3辺の長さとする三角形(赤い三角形)の面積が57のとき、元の三角形(青い三角形)の面積を求めてください。
半角数字で解答してください。
直径10の半円中に、直径の和が10となる2つの半円を図のように配置します。点Aを大半円の弧上にとり、線分AB,ACと小半円の交点をD,Eとします。 $BD^2+DE^2+EC^2$が最小となるようにしたとき、その最小値を求めてください。
原点$O$とする$xy$平面上で点$(3,2)$を通る傾き負の直線と$x$軸,$y$軸との交点をそれぞれ$A,B$とするとき、$\triangle OAB$の面積の最小値を求めよ。
整数または既約分数で答えてください。 半角で入力してください。
数列 $ \{ a_n \} $ $(n=1,2\dots)$ を、 $$ a_1=2,\ a_2=3,\ a_{n+1} = \max_{1 \leqq k \leqq n} \{ (n-k+1)a_k \}\ (n \geqq 2) $$
で定める。$ \{ a_n \} $ の一般項を求め、さらに $\log_{3}{(a_{6062})}$ の値を求めよ。
$\log_{3}{(a_{6062})}$ はある自然数となるので、その値を半角数字で答えよ。
緑色の線分の長さは1です。 このとき、円の面積を求めてください。 図中の赤点はそれを含む線分の中点です。
答えは(分数)×πの形になります。 分子を1行目に、分母を2行目に半角数字で入力してください。 ただし、既約分数の形で解答してください。 例: (10/3)π → 1行目に10、2行目に3
ある大きさの球から、ある直径の円柱をくりぬいた。円柱の軸は球の中心を通る。(ビーズのような形を想像してください) この立体の体積が$36\pi$のとき、以下のうちいずれかの値が一意に定まる。
一意に定まるものの番号と、その値を求めよ。
一意に定まるものの番号を半角数字で1行目に、その値を2行目に入れてください。2行目は整数または既約分数で答えてください。
1 4
図中の青い線分の長さはすべて10,赤で示した角はすべて等しいです。 このとき、緑色部分(凹四角形)の面積を求めてください。 解答形式に注意!
$答えはA\sqrt{B}の形になります。(A,Bは自然数)$ $A+Bを解答してください。$ $<注意>$ $根号の中が最小となるようにしてください。$ $半角数字で解答してください。$ $例 : green area=10\sqrt{8}=20\sqrt{2}→A=20,B=2→22 と解答$
関数 $f(x)$ を $f(x)=4x(1-x)$ で定義し、数列 $ \{ x_n \} $ $(n=1,2\dots)$ を、 $$ x_1=\sin^2{1}=0.708073418...,\ \ x_{n+1} = f(x_n) \ \ (n=1,2,...) $$
で定める。このとき、 極限値 $\displaystyle \lim_{n \to \infty} \frac{1}{n}\sum_{k=1}^n \log|f'(x_k)|$ を求めよ。
注: 角度の単位はラジアンを用いる。 $\log$ は自然対数を表すものとする。また、$\pi$ が無理数であることは認めてよい。
求めた極限値を小数で表し、絶対値の小数第4位を四捨五入したものに、必要ならば負号をつけて答えよ。すべて半角で入力すること。 例1: $2\pi = 6.2831...$と解答する場合には、「6.283」と入力せよ。 例2: $-\pi = -3.1415...$と解答する場合には、「-3.142」と入力せよ。
また、必要なら以下の自然対数の値を用いよ。 $\log2 = 0.6931..., \log3=1.0986... ,\log7 =1.9459...$
三角形の3つの内角の大きさを$A,B,C$とします。このとき、次の式の最小値を求めてください。 $$ \frac{1-\cos A}{\cos B+\cos C}+\frac{1-\cos B}{\cos C+\cos A}+\frac{1-\cos C}{\cos A+\cos B} $$
最小値は$\frac {[ア]}{[イ]}$となります。$[ア]+[イ]$を解答してください。 ただし、$[ア],[イ]$にはそれぞれ自然数が入り、その最大公約数は$1$とします。
$r$ を正の整数とする。$xyz$ 空間において,原点を中心とする半径 $\sqrt{r}$ の球面を $S_r$ で表すとき,次の問いに答えなさい。
※点 $(x,y,z)$ が格子点であるとは,$x,y,z$ がすべて整数であることをいう。
改行区切りで,1行目に 1. の答えを,2行目に 2. の答えを入力してください。
図中の赤い線分の長さが10のとき、青で示した四角形の面積を求めてください。
正方形が2つ、図のように配置されています。赤い線分の長さが20のとき、緑で示した四角形の面積を求めてください。 ただし、図中の青点はそれぞれの正方形の対角線の交点です。