$\sqrt[10] {10}$ の小数第一位の値を求めよ。 ただし, $\log_{10}{2}=0.3010$ とする。
答えを半角数字で入力してください。
与えられた近似値以外は使ってはいけません。
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
三角形の外側に3つの正方形を図のように作りました。橙・緑・紫の線分の長さを3辺の長さとする三角形(赤い三角形)の面積が57のとき、元の三角形(青い三角形)の面積を求めてください。
半角数字で解答してください。
ある大きさの球から、ある直径の円柱をくりぬいた。円柱の軸は球の中心を通る。(ビーズのような形を想像してください) この立体の体積が$36\pi$のとき、以下のうちいずれかの値が一意に定まる。
一意に定まるものの番号と、その値を求めよ。
一意に定まるものの番号を半角数字で1行目に、その値を2行目に入れてください。2行目は整数または既約分数で答えてください。
1 4
数列 $ \{ a_n \} $ $(n=1,2\dots)$ を、 $$ a_1=2,\ a_2=3,\ a_{n+1} = \max_{1 \leqq k \leqq n} \{ (n-k+1)a_k \}\ (n \geqq 2) $$
で定める。$ \{ a_n \} $ の一般項を求め、さらに $\log_{3}{(a_{6062})}$ の値を求めよ。
$\log_{3}{(a_{6062})}$ はある自然数となるので、その値を半角数字で答えよ。
緑色の線分の長さは1です。 このとき、円の面積を求めてください。 図中の赤点はそれを含む線分の中点です。
答えは(分数)×πの形になります。 分子を1行目に、分母を2行目に半角数字で入力してください。 ただし、既約分数の形で解答してください。 例: (10/3)π → 1行目に10、2行目に3
$r$ を正の整数とする。$xyz$ 空間において,原点を中心とする半径 $\sqrt{r}$ の球面を $S_r$ で表すとき,次の問いに答えなさい。
※点 $(x,y,z)$ が格子点であるとは,$x,y,z$ がすべて整数であることをいう。
改行区切りで,1行目に 1. の答えを,2行目に 2. の答えを入力してください。
関数 $f(x)$ を $f(x)=4x(1-x)$ で定義し、数列 $ \{ x_n \} $ $(n=1,2\dots)$ を、 $$ x_1=\sin^2{1}=0.708073418...,\ \ x_{n+1} = f(x_n) \ \ (n=1,2,...) $$
で定める。このとき、 極限値 $\displaystyle \lim_{n \to \infty} \frac{1}{n}\sum_{k=1}^n \log|f'(x_k)|$ を求めよ。
注: 角度の単位はラジアンを用いる。 $\log$ は自然対数を表すものとする。また、$\pi$ が無理数であることは認めてよい。
求めた極限値を小数で表し、絶対値の小数第4位を四捨五入したものに、必要ならば負号をつけて答えよ。すべて半角で入力すること。 例1: $2\pi = 6.2831...$と解答する場合には、「6.283」と入力せよ。 例2: $-\pi = -3.1415...$と解答する場合には、「-3.142」と入力せよ。
また、必要なら以下の自然対数の値を用いよ。 $\log2 = 0.6931..., \log3=1.0986... ,\log7 =1.9459...$
次の命題の真偽を答えなさい。
$0\leq a, b < 10$ を満たす実数 $a,b$ を $10$進小数 で表したものをそれぞれ $a_0.a_1a_2a_3\cdots, \;b_0.b_1b_2b_3\cdots$ とするとき,ある $k=0,1,\cdots$ に対して $a_k\neq b_k$ ならば $a\neq b$ である。
$\vec{a}_1, \vec{a}_2$ を平行(*)でない平面ベクトルとする。実数 $k_1, k_2, k_1', k_2'$ に対して \begin{equation} k_1\vec{a}_1+k_2\vec{a}_2=k_1'\vec{a}_1+k_2'\vec{a}_2 \end{equation}が成り立つならば $k_1=k_1'$ かつ $k_2=k_2'$ である。
実数全体を定義域とする微分可能な実数値関数 $f(x)$ が \begin{equation} f'(x)=x \end{equation}を満たすとする。このとき,$f(x)$ はある実数 $a$ を用いて \begin{equation} f(x)=\int_a^x t dt \end{equation}と表せる。
数列 $\{a_n\}, \{b_n\}$ は $n\to\infty$ である実数に収束するとする 。任意の $n$ に対して $b_n\neq 0$ ならば,数列 $\displaystyle{\left\{\frac{a_n}{b_n}\right\}}$ も収束する。
$k=1,2,3, 4$ に対して,命題 $k$ が真なら T を,偽なら F を第 $k$ 行に出力してください。
T
F
$f_m(x)$という関数列を$f_1(x)=\log{x},f_{m+1}=\log{f_m(x)}$と定義します。ただし$\log{x}$は自然対数です。 具体的には$f_1(x)=\log{x},f_2(x)=\log{\log{x}},f_3(x)=\log{\log{\log{x}}},\ldots$となります。 このとき、 $$\lim_{n\to\infty}\{f_m(3^n)-f_m(2^n)\}=0$$ となるような最小の自然数$m$を求めてください。
半角数字で入力してください。
$n$ を非負整数とする。縦の長さが $3$,横の長さが $2n$ の長方形をした部屋を,辺の長さが $1$ と $2$ の長方形の畳で敷き詰める方法の総数を $a_n$ とする。ただし,部屋を固定したとき,畳を回転または反転させて一致するような敷き詰め方は区別して数える。また,便宜上 $a_0=1$ と約束する。
例えば,縦の長さが $3$,横の長さが $2$ である部屋を畳で敷き詰める方法は の $3$ 通りだから $a_1=3$ である。このとき $$ a_n=\fbox{ア}\;a_{n-1}+\fbox{イ}\;\sum_{k=0}^{n-2}a_k\quad (n=2,3,\cdots) $$が成り立つから $$ a_4=\fbox{ウエオ} $$である。また,上の漸化式を変形すると $$ \lim_{n\to\infty}\frac{a_{n+1}}{a_n}=\fbox{カ}+\sqrt{\fbox{キ}} $$が成り立つことが分かる。
$\fbox{ア}$ 〜 $\fbox{キ}$ には,半角数字 0 - 9 のいずれかが当てはまります。$\fbox{ア}$ 〜 $\fbox{キ}$ に当てはまるものを,改行区切りで入力してください。
0 - 9
おかぴんはチョコレート入りの袋が3袋入った箱を持っていて、これから食べようとしています。 しかし、おかぴんは怠惰なので食べ終わった空の袋を捨てずに、再び箱の中に入れてしまいます。 箱の中から1袋ずつ取り出して、それがチョコレートの入った袋だったなら食べて箱の中に空の袋を戻し、それが空の袋だったなら食べずにそのまま箱の中に戻す、という試行を繰り返します。 チョコレートの入った袋を取り出す確率も空の袋を取り出す確率も同様に確からしいとするとき、箱の中の全てのチョコレートを食べ終えるまでの試行回数の期待値を求めてください。
答えは$\frac{\fboxア}{\fboxイ}$(ただし既約分数)となります。$\fboxア\fboxイ$に入る数字をそれぞれ1,2行目に半角で入力してください。
ピザが1枚ずつ乗った $N\;(\geq 2)$ 枚の皿が横一列に並んでいます.ピザには表と裏があり,表には具がのっていて,裏にはのっていません.はじめ,すべての皿のピザは表が上になっています.これらのピザに対して,次の操作Xを考えます.
操作X:
この操作Xを$\;N-1\;$回繰り返すと,1枚の皿にピザの塔ができます.操作Xの $N-1$ 回の繰り返しをピザの調理ということにします.ピザの塔を構成するピザを,上から順に$\;P_i\; (i=1,\cdots, N)\;$とし,$P_i$ が表を上に向けているとき「表」,裏を上に向けているとき「裏」と書くことにすると,ピザの塔は「裏裏裏表」のように表すことができます.
$N=6$とします.「裏裏裏裏表表」というピザの塔ができるような調理は何通りあるか答えなさい.
半角数字で入力してください.
直径10の半円中に、直径の和が10となる2つの半円を図のように配置します。点Aを大半円の弧上にとり、線分AB,ACと小半円の交点をD,Eとします。 $BD^2+DE^2+EC^2$が最小となるようにしたとき、その最小値を求めてください。