求面積問題8

Kinmokusei 自動ジャッジ 難易度: 数学 > 中学数学
2020年8月26日19:27 正解数: 8 / 解答数: 10 (正答率: 80%) ギブアップ数: 1

全 10 件

回答日時 問題 解答者 結果
2023年11月20日16:43 求面積問題8 naoperc
正解
2023年6月18日13:42 求面積問題8 ゲスト
正解
2021年10月19日23:10 求面積問題8 ゲスト
正解
2021年3月12日11:48 求面積問題8 tima_C
正解
2020年8月30日22:50 求面積問題8 okapin
正解
2020年8月30日17:21 求面積問題8 ゲスト
正解
2020年8月28日12:07 求面積問題8 mossomoso2
不正解
2020年8月27日18:42 求面積問題8 baba
正解
2020年8月27日18:38 求面積問題8 baba
不正解
2020年8月27日16:43 求面積問題8 mochimochi
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

求面積問題5

Kinmokusei 自動ジャッジ 難易度:
3年前

4

問題文

正方形が2つ、図のように配置されています。赤い線分の長さが20のとき、緑で示した四角形の面積を求めてください。
ただし、図中の青点はそれぞれの正方形の対角線の交点です。

解答形式

半角数字で解答してください。

求角問題4

Kinmokusei 自動ジャッジ 難易度:
3年前

4

問題文

正六角形2つが図のように配置されています。赤い線分と青い線分の長さの比が1:4であるとき、緑で示した角Yの角度を求めてください。
ただし、図中"center"で示した点は正六角形の外心です。

解答形式

0~360までの半角数字で、「°」や「度」をつけずに解答してください。

求値問題

Kinmokusei 自動ジャッジ 難易度:
3年前

4

問題文

三角形の3つの内角の大きさを$A,B,C$とします。このとき、次の式の最小値を求めてください。
$$
\frac{1-\cos A}{\cos B+\cos C}+\frac{1-\cos B}{\cos C+\cos A}+\frac{1-\cos C}{\cos A+\cos B}
$$

解答形式

最小値は$\frac {[ア]}{[イ]}$となります。$[ア]+[イ]$を解答してください。
ただし、$[ア],[イ]$にはそれぞれ自然数が入り、その最大公約数は$1$とします。

求長問題4

Kinmokusei 自動ジャッジ 難易度:
3年前

5

問題文

正七角形2つが図のように配置されています。
赤色の線分の長さが7のとき、青色の線分の長さを求めてください。

解答形式

半角数字で解答してください。

求長問題5

Kinmokusei 自動ジャッジ 難易度:
3年前

12

問題文

※解答形式に注意!

図のように配置された3つの正三角形があります。青い線分の長さを求めてください。
ただし、赤、紫、緑の線分の長さはそれぞれ1,2,3で、隣り合う正三角形の間の角は30°です。

解答形式

答えは自然数$A,B$を用いて$A\sqrt{B}$の形に表せます。$A+B$を解答してください。
ただし、根号の中はできるだけ小さい自然数にしてください。

hinu積分01

hinu 自動ジャッジ 難易度:
3年前

13

問題

定積分

$$
\int_0^{\pi/2}\dfrac{\cos{x}-x}{1+\sin{x}}dx
$$

を計算せよ。

回答形式

半角数字で答えよ。無理数や記号等を用いる場合はTeX形式で入力せよ。

求長問題2

Kinmokusei 自動ジャッジ 難易度:
3年前

7

問題文

直径10の半円中に、直径の和が10となる2つの半円を図のように配置します。点Aを大半円の弧上にとり、線分AB,ACと小半円の交点をD,Eとします。
$BD^2+DE^2+EC^2$が最小となるようにしたとき、その最小値を求めてください。

解答形式

半角数字で解答してください。

求面積問題4

Kinmokusei 自動ジャッジ 難易度:
3年前

6

問題文

半径比が1:2の同心円と直角三角形です。
赤い線分の長さが12のとき、緑の三角形の面積を求めてください。

解答形式

半角数字で解答してください。

面積の二乗の小数部分

zyogamaya 自動ジャッジ 難易度:
2年前

10

問題文

どの辺の長さも整数である$\triangle ABC$の面積を$S$とする。$S^2$の小数部分を求めよ。

解答形式

とりうるすべての小数部分を小さい順に都度改行、列挙してください。
例:
「0,1/2,1/3,1/6,1/√5」の場合、

0
0.5
0.'3'
0.1'6'
1/\sqrt{5}

求面積問題16

Kinmokusei 自動ジャッジ 難易度:
2年前

3

問題文

図のように3つの正方形が配置されています。3つの線分の長さが図のように与えられたとき、緑の六角形の面積を求めてください。

解答形式

面積は、
$$
\fbox{アイ}+\frac{\fbox{ウエ}\sqrt{\fbox{オカ}}}{\fbox{キ}}
$$
となります。$\fbox ア~\fbox キ$には0以上9以下の整数が入ります。文字列「アイウエオカキ」を解答してください(「」は不要)。ただし、根号の中身や分数は最も簡単な形にしてください。

例$$
面積S=17+\frac{22\sqrt{52}}{8}\rightarrow 17+\frac{11\sqrt{13}}{2}\rightarrow 1711132 と解答
$$

求角問題6

Kinmokusei 自動ジャッジ 難易度:
3年前

5

問題文

図のように長方形や直角三角形の内接円が配置されています。青で示した角の角度を求めてください。

解答形式

度数法で求め、半角数字で0以上360未満の整数を解答してください。
※度や°などの単位は付けないでください。

求長問題13

Kinmokusei 自動ジャッジ 難易度:
2年前

4

問題文

正方形の中に図のように線を引きました。赤、青の線分の長さがそれぞれ1,7のとき、緑の線分の長さを求めてください。

解答形式

半角数字で解答してください。