求面積問題6

Kinmokusei 自動ジャッジ 難易度: 数学 > 中学数学
2020年8月14日17:25 正解数: 8 / 解答数: 9 (正答率: 88.9%) ギブアップ不可

全 9 件

回答日時 問題 解答者 結果
2024年3月8日17:16 求面積問題6 Prime-Quest
正解
2024年1月19日23:05 求面積問題6 natsuneko
正解
2023年12月11日13:13 求面積問題6 nmoon
正解
2023年11月21日14:53 求面積問題6 naoperc
正解
2023年2月14日17:36 求面積問題6 ゲスト
正解
2023年2月14日17:35 求面積問題6 ゲスト
不正解
2020年8月15日17:14 求面積問題6 baba
正解
2020年8月14日21:43 求面積問題6 tkg06269476
正解
2020年8月14日21:20 求面積問題6 mochimochi
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

求面積問題5

Kinmokusei 自動ジャッジ 難易度:
4年前

9

問題文

正方形が2つ、図のように配置されています。赤い線分の長さが20のとき、緑で示した四角形の面積を求めてください。
ただし、図中の青点はそれぞれの正方形の対角線の交点です。

解答形式

半角数字で解答してください。

求値問題2

Kinmokusei 自動ジャッジ 難易度:
4年前

8

問題文

$△ABC$は鋭角三角形とします。次に、$A,B,C$から$BC,CA,AB$におろした垂線の足をそれぞれ$X,Y,Z$とし、$△ABC,△XYZ$の内接円の半径をそれぞれ$r,r'$とします。このとき、次の式の最小値を求めてください。
$$
\frac{r}{r'}\cos{\frac A2}\cos{\frac B2}\cos{\frac C2}
$$

解答形式

$$
\frac{r}{r'}\cos{\frac A2}\cos{\frac B2}\cos{\frac C2}\geq\frac{[ア]\sqrt{[イ]}}{[ウ]}=(最小値)
$$
となります。$[ア]+[イ]+[ウ]$を半角数字で解答してください。
ただし、$[ア],[イ],[ウ]$には自然数が入ります。また、分数部分は既約分数に、根号内の数字は最小となるようにしてください。

求面積問題15

Kinmokusei 自動ジャッジ 難易度:
3年前

10

問題文

緑色の五角形の面積を求めてください。
紫でしめした3つの角は等しく、赤同士、青同士の線分はそれぞれ等しい長さです。

解答形式

半角数字で解答してください。

求面積問題9

Kinmokusei 自動ジャッジ 難易度:
4年前

7

問題文

問題文を3つの半円が図のように配置されています。赤い部分の面積が9、緑の部分の面積が5のとき、青い部分の面積を求めてください。

解答形式

半角数字で解答してください。

求値問題

Kinmokusei 自動ジャッジ 難易度:
4年前

6

問題文

三角形の3つの内角の大きさを$A,B,C$とします。このとき、次の式の最小値を求めてください。
$$
\frac{1-\cos A}{\cos B+\cos C}+\frac{1-\cos B}{\cos C+\cos A}+\frac{1-\cos C}{\cos A+\cos B}
$$

解答形式

最小値は$\frac {[ア]}{[イ]}$となります。$[ア]+[イ]$を解答してください。
ただし、$[ア],[イ]$にはそれぞれ自然数が入り、その最大公約数は$1$とします。

求面積問題8

Kinmokusei 自動ジャッジ 難易度:
4年前

15

問題文

△ABCと点Pをとり、△ABP, △BCP, △CAPの重心をそれぞれ$G_1, G_2, G_3$とします。青で示した3つの三角形の面積の和が10のとき、$△G_1G_2G_3$(赤い三角形)の面積を求めてください。

解答形式

半角数字で解答してください。

求面積問題3

Kinmokusei 自動ジャッジ 難易度:
4年前

12

問題文

図中の青い線分の長さはすべて10,赤で示した角はすべて等しいです。
このとき、緑色部分(凹四角形)の面積を求めてください。
解答形式に注意!

解答形式

$答えはA\sqrt{B}の形になります。(A,Bは自然数)$
$A+Bを解答してください。$
$<注意>$
$根号の中が最小となるようにしてください。$
$半角数字で解答してください。$
$例 : green area=10\sqrt{8}=20\sqrt{2}→A=20,B=2→22 と解答$

求面積問題10

Kinmokusei 自動ジャッジ 難易度:
4年前

7

問題文

図中の赤い線分の長さが10のとき、青で示した四角形の面積を求めてください。

解答形式

半角数字で解答してください。

求面積問題11

Kinmokusei 自動ジャッジ 難易度:
3年前

9

問題文

【解答形式に注意!】

半径と中心角が等しい扇形に正方形が内接しています。青い正方形と赤い正方形の面積の大小関係を調べてください。
ただし、同じ印をつけた部分の長さは等しいです。

解答形式

(青の面積) > (赤の面積) なら 1
(青の面積) = (赤の面積) なら 2
(青の面積) < (赤の面積) なら 3
を、半角数字で解答してください。

求長問題3

Kinmokusei 自動ジャッジ 難易度:
4年前

8

問題文

2つの正六角形が図のように配置されています。
赤い線分の長さが10のとき、青い線分の長さを求めてください。
ただし、図中"center"で示した点は各正六角形の外心です。

解答形式

半角数字で解答してください。

求角問題4

Kinmokusei 自動ジャッジ 難易度:
4年前

7

問題文

正六角形2つが図のように配置されています。赤い線分と青い線分の長さの比が1:4であるとき、緑で示した角Yの角度を求めてください。
ただし、図中"center"で示した点は正六角形の外心です。

解答形式

0~360までの半角数字で、「°」や「度」をつけずに解答してください。

求面積問題16

Kinmokusei 自動ジャッジ 難易度:
3年前

7

問題文

図のように3つの正方形が配置されています。3つの線分の長さが図のように与えられたとき、緑の六角形の面積を求めてください。

解答形式

面積は、
$$
\fbox{アイ}+\frac{\fbox{ウエ}\sqrt{\fbox{オカ}}}{\fbox{キ}}
$$
となります。$\fbox ア~\fbox キ$には0以上9以下の整数が入ります。文字列「アイウエオカキ」を解答してください(「」は不要)。ただし、根号の中身や分数は最も簡単な形にしてください。

例$$
面積S=17+\frac{22\sqrt{52}}{8}\rightarrow 17+\frac{11\sqrt{13}}{2}\rightarrow 1711132 と解答
$$