緑色の線分の長さは1です。 このとき、円の面積を求めてください。 図中の赤点はそれを含む線分の中点です。
答えは(分数)×πの形になります。 分子を1行目に、分母を2行目に半角数字で入力してください。 ただし、既約分数の形で解答してください。 例: (10/3)π → 1行目に10、2行目に3
補助線は要りません。
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
図のように配置された3つの正三角形があります。青い線分の長さを求めてください。 ただし、赤、紫、緑の線分の長さはそれぞれ1,2,3で、隣り合う正三角形の間の角は30°です。
答えは自然数$A,B$を用いて$A\sqrt{B}$の形に表せます。$A+B$を解答してください。 ただし、根号の中はできるだけ小さい自然数にしてください。
定積分
$$ \int_0^1 (\sqrt[7]{1-x^{11}}-\sqrt[11]{1-x^{7}})dx $$
を求めよ。
値は半角数字で記述せよ。無理数などを用いたい場合は必要ならばTeX記法により記述せよ。
$f_m(x)$という関数列を$f_1(x)=\log{x},f_{m+1}=\log{f_m(x)}$と定義します。ただし$\log{x}$は自然対数です。 具体的には$f_1(x)=\log{x},f_2(x)=\log{\log{x}},f_3(x)=\log{\log{\log{x}}},\ldots$となります。 このとき、 $$\lim_{n\to\infty}\{f_m(3^n)-f_m(2^n)\}=0$$ となるような最小の自然数$m$を求めてください。
半角数字で入力してください。
$n$を2以上の整数とし, $f(x)=\sqrt[n]{x^n+nx^{n-1}} (x\geq0)$を考える。
$(1)$ $x$を正の整数とするとき, $f(x)$の値が整数でないことを示せ。
$(2)$ $y=f(x)$, $x$軸, $x=m-1$ ($m$は正の整数) で囲まれた領域内(境界線上も含む)の格子点の数を求めよ。
$(2)$ で $m=100$ のときの答えを半角数字で入力してください。
青い三角形の面積が6のとき、外側の正方形の面積を求めてください。 なお、正方形と円は図中の赤で示した点で接します。
正方形の面積を半角数字で入力してください。
$n\geq 2$ を自然数とする。$2$ 進数表記で \begin{equation} N=\underbrace{11\cdots 11}_n \underbrace{00\cdots 00} _ {n-1} {} _ {(2)} \end{equation}と表される自然数 $N$ を考える。$n=13$ のとき,$N$ の正の約数の総和を求めなさい。
$2$ 進数で答えなさい。
次の命題の真偽を答えなさい。
$0\leq a, b < 10$ を満たす実数 $a,b$ を $10$進小数 で表したものをそれぞれ $a_0.a_1a_2a_3\cdots, \;b_0.b_1b_2b_3\cdots$ とするとき,ある $k=0,1,\cdots$ に対して $a_k\neq b_k$ ならば $a\neq b$ である。
$\vec{a}_1, \vec{a}_2$ を平行(*)でない平面ベクトルとする。実数 $k_1, k_2, k_1', k_2'$ に対して \begin{equation} k_1\vec{a}_1+k_2\vec{a}_2=k_1'\vec{a}_1+k_2'\vec{a}_2 \end{equation}が成り立つならば $k_1=k_1'$ かつ $k_2=k_2'$ である。
実数全体を定義域とする微分可能な実数値関数 $f(x)$ が \begin{equation} f'(x)=x \end{equation}を満たすとする。このとき,$f(x)$ はある実数 $a$ を用いて \begin{equation} f(x)=\int_a^x t dt \end{equation}と表せる。
数列 $\{a_n\}, \{b_n\}$ は $n\to\infty$ である実数に収束するとする 。任意の $n$ に対して $b_n\neq 0$ ならば,数列 $\displaystyle{\left\{\frac{a_n}{b_n}\right\}}$ も収束する。
$k=1,2,3, 4$ に対して,命題 $k$ が真なら T を,偽なら F を第 $k$ 行に出力してください。
T
F
三角形の外側に3つの正方形を図のように作りました。橙・緑・紫の線分の長さを3辺の長さとする三角形(赤い三角形)の面積が57のとき、元の三角形(青い三角形)の面積を求めてください。
半角数字で解答してください。
$$ \int_0^{\pi/2}\dfrac{\cos{x}-x}{1+\sin{x}}dx $$
を計算せよ。
半角数字で答えよ。無理数や記号等を用いる場合はTeX形式で入力せよ。
おかぴんはチョコレート入りの袋が3袋入った箱を持っていて、これから食べようとしています。 しかし、おかぴんは怠惰なので食べ終わった空の袋を捨てずに、再び箱の中に入れてしまいます。 箱の中から1袋ずつ取り出して、それがチョコレートの入った袋だったなら食べて箱の中に空の袋を戻し、それが空の袋だったなら食べずにそのまま箱の中に戻す、という試行を繰り返します。 チョコレートの入った袋を取り出す確率も空の袋を取り出す確率も同様に確からしいとするとき、箱の中の全てのチョコレートを食べ終えるまでの試行回数の期待値を求めてください。
答えは$\frac{\fboxア}{\fboxイ}$(ただし既約分数)となります。$\fboxア\fboxイ$に入る数字をそれぞれ1,2行目に半角で入力してください。
直径10の半円中に、直径の和が10となる2つの半円を図のように配置します。点Aを大半円の弧上にとり、線分AB,ACと小半円の交点をD,Eとします。 $BD^2+DE^2+EC^2$が最小となるようにしたとき、その最小値を求めてください。
半径比が1:2の同心円と直角三角形です。 赤い線分の長さが12のとき、緑の三角形の面積を求めてください。