青い三角形の面積が6のとき、外側の正方形の面積を求めてください。 なお、正方形と円は図中の赤で示した点で接します。
正方形の面積を半角数字で入力してください。
青い三角形と合同な三角形を見つけましょう。
Twitterでログイン Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
半円2つが図のように配置されています。 赤い線分と青い線分は長さの比が1:2です。 このとき、Xの角度を求めてください。
半角数字で入力してください。 「度」や「°」は付けないでください。 例:X=57° → 57
半径比が1:2の同心円と直角三角形です。 赤い線分の長さが12のとき、緑の三角形の面積を求めてください。
半角数字で解答してください。
緑色の線分の長さは1です。 このとき、円の面積を求めてください。 図中の赤点はそれを含む線分の中点です。
答えは(分数)×πの形になります。 分子を1行目に、分母を2行目に半角数字で入力してください。 ただし、既約分数の形で解答してください。 例: (10/3)π → 1行目に10、2行目に3
図のように2つの半円が配置されています。(右側の半円の直径の一端は左側の半円の中心に一致する。)赤、緑で示した線分の長さがそれぞれ3,10のとき、青で示した四角形の面積を求めてください。 ただし、図中点線で示した直線は2つの半円の共通接線です。
同じ色の線分は同じ長さです。 ∠Xの大きさを求めてください。 青と黄、赤と黄緑の線分が重なって一部見づらくなっています。m(__)m
度数法で、0~360の数字を半角で入力してください。 例:∠X=30° → 30 「度」や"°"をつけずに回答してください。
直径10の半円中に、直径の和が10となる2つの半円を図のように配置します。点Aを大半円の弧上にとり、線分AB,ACと小半円の交点をD,Eとします。 $BD^2+DE^2+EC^2$が最小となるようにしたとき、その最小値を求めてください。
図中の青い線分の長さはすべて10,赤で示した角はすべて等しいです。 このとき、緑色部分(凹四角形)の面積を求めてください。 解答形式に注意!
$答えはA\sqrt{B}の形になります。(A,Bは自然数)$ $A+Bを解答してください。$ $<注意>$ $根号の中が最小となるようにしてください。$ $半角数字で解答してください。$ $例 : green area=10\sqrt{8}=20\sqrt{2}→A=20,B=2→22 と解答$
図のように正六角形・扇形・その接線があります。Xで示した角の大きさを求めてください。
0以上360未満の半角数字で解答してください。 ※単位(°や度など)をつけず、度数法で解答。
半径と中心角が等しい扇形に正方形が内接しています。青い正方形と赤い正方形の面積の大小関係を調べてください。 ただし、同じ印をつけた部分の長さは等しいです。
(青の面積) > (赤の面積) なら 1 (青の面積) = (赤の面積) なら 2 (青の面積) < (赤の面積) なら 3 を、半角数字で解答してください。
図のように配置された3つの正三角形があります。青い線分の長さを求めてください。 ただし、赤、紫、緑の線分の長さはそれぞれ1,2,3で、隣り合う正三角形の間の角は30°です。
答えは自然数$A,B$を用いて$A\sqrt{B}$の形に表せます。$A+B$を解答してください。 ただし、根号の中はできるだけ小さい自然数にしてください。
正七角形2つが図のように配置されています。 赤色の線分の長さが7のとき、青色の線分の長さを求めてください。
図中の赤い線分の長さが10のとき、青で示した四角形の面積を求めてください。