hinu問題02

hinu 自動ジャッジ 難易度: 数学 > 高校数学
2020年6月2日17:37 正解数: 31 / 解答数: 34 (正答率: 91.2%) ギブアップ不可

全 34 件

回答日時 問題 解答者 結果
2024年4月6日13:15 hinu問題02 SelfCrossCurve
正解
2024年4月3日21:50 hinu問題02 sdzzz
正解
2024年4月3日19:38 hinu問題02 karinohito
正解
2024年2月29日11:02 hinu問題02 Prime-Quest
正解
2024年1月24日9:42 hinu問題02 natsuneko
正解
2023年10月29日22:08 hinu問題02 highlighter_math
正解
2023年10月29日21:35 hinu問題02 nmoon
正解
2023年9月20日18:51 hinu問題02 Modern
正解
2023年2月23日9:41 hinu問題02 ゲスト
正解
2023年2月16日0:56 hinu問題02 tsx
正解
2023年2月8日1:24 hinu問題02 Nnna
不正解
2023年2月7日2:19 hinu問題02 miq
正解
2022年12月24日15:48 hinu問題02 ゲスト
正解
2022年12月7日1:42 hinu問題02 ゲスト
正解
2022年3月23日18:03 hinu問題02 Yu__du_03
正解
2021年11月6日8:25 hinu問題02 gyakugirepanda
正解
2021年9月9日14:52 hinu問題02 naoperc
正解
2021年8月26日14:02 hinu問題02 ゲスト
正解
2021年7月4日11:00 hinu問題02 ゲスト
正解
2021年5月14日22:27 hinu問題02 Michael
正解
2021年3月30日12:48 hinu問題02 ゲスト
正解
2021年3月25日12:10 hinu問題02 tima_C
正解
2021年2月24日17:01 hinu問題02 ゲスト
正解
2020年10月31日22:09 hinu問題02 Benzenehat
正解
2020年10月31日22:08 hinu問題02 Benzenehat
不正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

整数問題①

lucy 自動ジャッジ 難易度:
3年前

20

問題文

$x!+2=y^4+5y$を満たす自然数$(x,y)$の組をすべて求めよ。

解答形式

以下の文章に入る$a,b,c$の値を入力せよ。1行目に$a$を、2行目に$b$を、3行目に$c$を入力すること。

条件を満たす自然数の組は$a$組存在する。その組の中で、$x$が最大となるような組は$(x,y)=(b,c)$である。

求値問題3

Kinmokusei 自動ジャッジ 難易度:
3年前

14

問題文

$x_1,x_2,\ldots,x_{24}$は正の実数とします。このとき、次の式の最小値を求めてください。
$$
\left(\sum_{n=1}^{24}\frac{n}{x_n}\right)\times\left(\sum_{n=1}^{24}nx_n\right)
$$

解答形式

半角数字で解答してください。

hinu積分01

hinu 自動ジャッジ 難易度:
3年前

16

問題

定積分

$$
\int_0^{\pi/2}\dfrac{\cos{x}-x}{1+\sin{x}}dx
$$

を計算せよ。

回答形式

半角数字で答えよ。無理数や記号等を用いる場合はTeX形式で入力せよ。

最大・最小問題

zyogamaya 自動ジャッジ 難易度:
3年前

19

問題文

$a,b,c$がいずれも正の実数であり、$a+b+c=5,abc=1$が成り立つとき、$ab+bc+ca$の最小値を求めよ。

解答形式

答えは既約分数になります。/を用いて入力してください。
例:$\displaystyle\frac{5}{7}$→5/7

都合のいいn

masorata 自動ジャッジ 難易度:
3年前

58

問題文

$n$ を整数とする。$x$ の整式

$$
x^4+(3n+2)x^3+(n^2+5)x^2+nx-1
$$

が整数係数の範囲でさらに因数分解できるような $n$ をすべて求めよ。

解答形式

$n$の値を小さい順に1,2,3,......行目にすべて半角で入力せよ。たとえば $n=-123, 45, 678$ と解答する場合、1行目に「-123」、2行目に「45」、3行目に「678」と入力せよ。

無理関数の最大値

zyogamaya 自動ジャッジ 難易度:
3年前

11

問題文

関数
$f(x)=\sqrt[3]{-(x+4)(2x+3)(3x-8)}\ \left(\displaystyle -\frac{3}{2} \leq x \leq \frac{8}{3}\right)$
の最大値を求めよ。

解答形式

半角数字またはTeXを入力してください。

整数問題②

lucy 自動ジャッジ 難易度:
3年前

13

問題文

$p^2+q^2+r^2+s^2=t^4+1$を満たす素数$(p,q,r,s,t)$の組を全て求めよ。但し$p\leq q\leq r\leq s$とする。

解答形式

一行目に式を満たす組が何組あるか答えよ。また、そのような組の中で、$t$が最大であるものについて、$p,q,r,s,t$の値をそれぞれ2行目、3行目、4行目…へ記入せよ。いずれも数字のみ記入せよ。

(本当は解き方まで見たいですが、個別判定が大変なのでこの形式にします。できれば、なぜそうなるかもしっかり考えてください。)

Thirteen Ones

halphy 自動ジャッジ 難易度:
3年前

23

問題文

$n\geq 2$ を自然数とする。$2$ 進数表記で
\begin{equation}
N=\underbrace{11\cdots 11}_n \underbrace{00\cdots 00} _ {n-1} {} _ {(2)}
\end{equation}と表される自然数 $N$ を考える。$n=13$ のとき,$N$ の正の約数の総和を求めなさい。

解答形式

$2$ 進数で答えなさい。

円周率 3

hinu 自動ジャッジ 難易度:
3年前

46

問題文

$\pi$ と $\dfrac{355}{113}$ はどちらが大きいか。ただし必要があれば積分

$$
\int_0^1\frac{x^8(1-x)^8(25+816x^2)}{3164(1+x^2)}dx
$$

を計算せよ。

解答形式

piまたは 355/113 で解答してください。

50629の素因数分解

masorata 自動ジャッジ 難易度:
3年前

44

問題文

$x^4+4$ を因数分解せよ。また、この結果を用いて $50629$ を素因数分解せよ。

解答形式

50629の素因数を小さい順に1,2,3......行目に半角数字で入力せよ。

求面積問題14

Kinmokusei 自動ジャッジ 難易度:
3年前

12

問題文

周の長さが30である長方形ABCDがあります。辺CD上に∠APB=90°となるような点Pをとれるとき、長方形ABCDの面積の最大値を求めてください。

解答形式

半角数字で解答してください。

[A] Natural Number

okapin 自動ジャッジ 難易度:
3年前

57

問題文

$\dfrac{n^2+2020}{2n}$が自然数となるような自然数$n$の総和を求めよ。

解答形式

解答を半角数字で入力してください。