都合のいいn

masorata 自動ジャッジ 難易度: 数学 > 高校数学
2020年6月6日14:40 正解数: 22 / 解答数: 41 (正答率: 53.7%) ギブアップ不可

全 41 件

回答日時 問題 解答者 結果
2021年9月20日11:16 都合のいいn ゲスト
不正解
2021年9月20日11:14 都合のいいn ゲスト
不正解
2021年9月13日21:03 都合のいいn ゲスト
不正解
2021年9月8日15:59 都合のいいn naoperc
正解
2021年5月14日23:07 都合のいいn Michael
不正解
2021年5月14日23:02 都合のいいn Michael
不正解
2021年4月2日13:12 都合のいいn tima_C
正解
2021年1月25日10:43 都合のいいn ゲスト
正解
2021年1月6日22:37 都合のいいn Benzenehat
正解
2020年6月30日1:07 都合のいいn green+
正解
2020年6月19日2:14 都合のいいn pichipichipizza
正解
2020年6月19日2:14 都合のいいn pichipichipizza
不正解
2020年6月19日2:11 都合のいいn pichipichipizza
不正解
2020年6月14日15:02 都合のいいn nioshinoh_h
正解
2020年6月10日16:40 都合のいいn shakayami
正解
2020年6月10日1:44 都合のいいn okapin
正解
2020年6月10日1:36 都合のいいn okapin
不正解
2020年6月9日15:07 都合のいいn ゲスト
正解
2020年6月9日1:25 都合のいいn Gin
正解
2020年6月9日1:24 都合のいいn Gin
不正解
2020年6月9日1:21 都合のいいn ゲスト
不正解
2020年6月9日1:20 都合のいいn ゲスト
不正解
2020年6月9日1:19 都合のいいn ebiyuu1121
正解
2020年6月9日1:15 都合のいいn ゲスト
不正解
2020年6月8日15:05 都合のいいn ゲスト
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

hinu積分03

hinu 自動ジャッジ 難易度:
2年前

13

問題文

定積分

$$
\int_0^1 (\sqrt[7]{1-x^{11}}-\sqrt[11]{1-x^{7}})dx
$$

を求めよ。

解答形式

値は半角数字で記述せよ。無理数などを用いたい場合は必要ならばTeX記法により記述せよ。

logの重複合成

shakayami 自動ジャッジ 難易度:
2年前

11

問題文

$f_m(x)$という関数列を$f_1(x)=\log{x},f_{m+1}=\log{f_m(x)}$と定義します。ただし$\log{x}$は自然対数です。
具体的には$f_1(x)=\log{x},f_2(x)=\log{\log{x}},f_3(x)=\log{\log{\log{x}}},\ldots$となります。
このとき、
$$\lim_{n\to\infty}\{f_m(3^n)-f_m(2^n)\}=0$$
となるような最小の自然数$m$を求めてください。

解答形式

半角数字で入力してください。

hinu問題02

hinu 自動ジャッジ 難易度:
2年前

20

問題文

$a,b,c$ を実数とする。次の連立方程式を解け。

$$
a^2-4b-1=0\\
b^2-8c+28=0\\
c^2-6a+2=0\\
$$

解答形式

a,b,cを半角数字として(a,b,c)で解答してください。無理数などを使いたい場合はTeXコマンドを使用してください。

tan三兄弟

masorata 自動ジャッジ 難易度:
2年前

24

問題文

実数 $A,B,C \ (-\pi/2<A<B<C<\pi/2)$ が

$$
\frac{1+\tan^3{A}}{1+3\tan^2A}=\frac{1+\tan^3{B}}{1+3\tan^2B}=\frac{1+\tan^3{C}}{1+3\tan^2C}\\
$$

をみたして動くとき、$\tan{(A+B+C)}$ がとりうる値の範囲を求めよ。

解答形式

解は $ m<\tan{(A+B+C)}< M$ の形で、$m,M$ はどちらも整数である。
$m,M$の値をそれぞれ1,2行目に半角数字で入力せよ。
例えば $m=-33, M=4$ と解答する場合、1行目に「-33」、2行目に「4」と入力せよ。

(20/06/21: よりシンプルな問題文に直しました。答えはそのままです。)

50629の素因数分解

masorata 自動ジャッジ 難易度:
2年前

29

問題文

$x^4+4$ を因数分解せよ。また、この結果を用いて $50629$ を素因数分解せよ。

解答形式

50629の素因数を小さい順に1,2,3......行目に半角数字で入力せよ。

求面積問題2

Kinmokusei 自動ジャッジ 難易度:
2年前

7

問題文

緑色の線分の長さは1です。
このとき、円の面積を求めてください。
図中の赤点はそれを含む線分の中点です。

解答形式

答えは(分数)×πの形になります。
分子を1行目に、分母を2行目に半角数字で入力してください。
ただし、既約分数の形で解答してください。
例: (10/3)π → 1行目に10、2行目に3

よじさんじ

masorata 自動ジャッジ 難易度:
2年前

9

問題文

実数$ a $ を $a=\sqrt[3]{1+\sqrt2} +\sqrt[3]{1-\sqrt2}$ で定める。以下の問いに答えよ。

⑴ $a^3+3a-2=0$ であることを示せ。また、$0<a<2$ を示せ。

⑵ $x$ について以下の恒等式が成り立つことを示せ。
$$
x^4+4x-3=(x^2+a)^2-2a(x-\frac{1}{a})^2
$$

⑶ 4次方程式 $x^4+4x-3=0$ の実数解を $a$ を用いて表せ。

解答形式

⑶のみ解答せよ。解は2つ存在し、
$$
x= -\sqrt{\frac{ア}{イ}}\ \pm \ \sqrt{\sqrt{\frac{ウ}{エ}}-\frac{オ}{カ}}
$$

の形である。ア~カのそれぞれには1から9までの自然数または文字$a$が入る。
ア~カに当てはまる数字または文字を、順にすべて半角で入力せよ。
たとえばア=2、イ=7、ウ=3、エ=5、オ=8、カ=$a$ と解答する場合は、
「27358a」と入力せよ。

EasyNumber.2 二つの自然数

PCTSMATH 自動ジャッジ 難易度:
2年前

14

問題文

ある二つの自然数a,bは積が和より1000大きくどちらかが立方数だった
この時a,bの組を全て求めよ

解答形式

a<bとした時のaを小さい順に半角数字で解答せよ
例 (4,7)(8,91)の時は48

整数問題①

lucy 自動ジャッジ 難易度:
2年前

15

問題文

$x!+2=y^4+5y$を満たす自然数$(x,y)$の組をすべて求めよ。

解答形式

以下の文章に入る$a,b,c$の値を入力せよ。1行目に$a$を、2行目に$b$を、3行目に$c$を入力すること。

条件を満たす自然数の組は$a$組存在する。その組の中で、$x$が最大となるような組は$(x,y)=(b,c)$である。

二等分

okapin 自動ジャッジ 難易度:
2年前

19

問題文

中心$O$, 直径$AB$とする円の$A,B$以外の円周上の点$C$を取り, $\angle BAC=\theta \ (0^\circ<\theta <90^\circ)$ とする。
このとき, 線分$OD$が線分$AC$によって二等分されるような点$D$が円周上に取れるような$\theta$の取りうる範囲を求めよ。

解答形式

求める$\theta$の範囲は$a^\circ<\theta\leq b^\circ$となります。1行目に$a$, 2行目に$b$を半角数字で入力してください。

hinu積分01

hinu 自動ジャッジ 難易度:
2年前

12

問題

定積分

$$
\int_0^{\pi/2}\dfrac{\cos{x}-x}{1+\sin{x}}dx
$$

を計算せよ。

回答形式

半角数字で答えよ。無理数や記号等を用いる場合はTeX形式で入力せよ。

カオス的数列

masorata 自動ジャッジ 難易度:
2年前

8

問題文

関数 $f(x)$ を $f(x)=4x(1-x)$ で定義し、数列 $ \{ x_n \} $ $(n=1,2\dots)$ を、
$$
x_1=\sin^2{1}=0.708073418...,\ \ x_{n+1} = f(x_n) \ \ (n=1,2,...)
$$

で定める。このとき、 極限値 $\displaystyle \lim_{n \to \infty} \frac{1}{n}\sum_{k=1}^n \log|f'(x_k)|$ を求めよ。

注: 角度の単位はラジアンを用いる。 $\log$ は自然対数を表すものとする。また、$\pi$ が無理数であることは認めてよい。

解答形式

求めた極限値を小数で表し、絶対値の小数第4位を四捨五入したものに、必要ならば負号をつけて答えよ。すべて半角で入力すること。
例1: $2\pi = 6.2831...$と解答する場合には、「6.283」と入力せよ。
例2: $-\pi = -3.1415...$と解答する場合には、「-3.142」と入力せよ。

また、必要なら以下の自然対数の値を用いよ。
$\log2 = 0.6931..., \log3=1.0986... ,\log7 =1.9459...$