One to Six

sapphire15 自動ジャッジ 難易度: 数学 > 算数
2020年6月11日11:13 正解数: 24 / 解答数: 30 (正答率: 80%) ギブアップ不可

問題文

$1\thicksim6$までの数字を$1$回ずつ使って空欄を埋め以下の等式を成立させてください。解が存在しない場合はその旨を答えてください。

$(1)\square\square\times\square=\square\square\square$
$(2)\square\square+\square\square=\square\square$

解答形式

1行目に$(1)$、2行目に$(2)$の解を入力してください。
等式をすべて半角で入力してください。ただし、「$\times$」はx(小文字のエックス)で代用するものとします。
存在しない場合は-1を入力してください。
また、解が複数存在する場合はどれを回答してもかまいません。

(例)
$3\times7=21$と入力する場合 3x7=21
$3+7=21$と入力する場合 3+7=10


ヒント1

値を上から抑えたり、一の位に注目したり、総和に注目することで解を絞り込めます。

ヒント2

候補は高々210通りしかないので、全探索するのも手です。


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Sign in with Google Discordでログイン パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

50629の素因数分解

masorata 自動ジャッジ 難易度:
2年前

36

問題文

$x^4+4$ を因数分解せよ。また、この結果を用いて $50629$ を素因数分解せよ。

解答形式

50629の素因数を小さい順に1,2,3......行目に半角数字で入力せよ。

求長問題5

Kinmokusei 自動ジャッジ 難易度:
2年前

10

問題文

※解答形式に注意!

図のように配置された3つの正三角形があります。青い線分の長さを求めてください。
ただし、赤、紫、緑の線分の長さはそれぞれ1,2,3で、隣り合う正三角形の間の角は30°です。

解答形式

答えは自然数$A,B$を用いて$A\sqrt{B}$の形に表せます。$A+B$を解答してください。
ただし、根号の中はできるだけ小さい自然数にしてください。

都合のいいn

masorata 自動ジャッジ 難易度:
2年前

43

問題文

$n$ を整数とする。$x$ の整式

$$
x^4+(3n+2)x^3+(n^2+5)x^2+nx-1
$$

が整数係数の範囲でさらに因数分解できるような $n$ をすべて求めよ。

解答形式

$n$の値を小さい順に1,2,3,......行目にすべて半角で入力せよ。たとえば $n=-123, 45, 678$ と解答する場合、1行目に「-123」、2行目に「45」、3行目に「678」と入力せよ。

Thirteen Ones

halphy 自動ジャッジ 難易度:
2年前

18

問題文

$n\geq 2$ を自然数とする。$2$ 進数表記で
\begin{equation}
N=\underbrace{11\cdots 11}_n \underbrace{00\cdots 00} _ {n-1} {} _ {(2)}
\end{equation}と表される自然数 $N$ を考える。$n=13$ のとき,$N$ の正の約数の総和を求めなさい。

解答形式

$2$ 進数で答えなさい。

求面積問題3

Kinmokusei 自動ジャッジ 難易度:
2年前

8

問題文

図中の青い線分の長さはすべて10,赤で示した角はすべて等しいです。
このとき、緑色部分(凹四角形)の面積を求めてください。
解答形式に注意!

解答形式

$答えはA\sqrt{B}の形になります。(A,Bは自然数)$
$A+Bを解答してください。$
$<注意>$
$根号の中が最小となるようにしてください。$
$半角数字で解答してください。$
$例 : green area=10\sqrt{8}=20\sqrt{2}→A=20,B=2→22 と解答$

Square Taxi

sapphire15 自動ジャッジ 難易度:
2年前

183

問題文

相異なる正の整数$a, b,c, d,k$が
$$a^2 + b^2 = c^2 + d^2 = k$$
を満たすものとします。$k$の最小値を求めてください。

解答形式

半角数字で回答してください。

備考

  • 6/10 14:26 問題文を「非負整数」→「正の整数」に修正しました。

鏡の中のf(x)

masorata 自動ジャッジ 難易度:
2年前

44

問題文

関数 $f(x)$ は、すべての実数 $x$ に対して

$$
f(x)=2f(-x)+\frac{3x}{x^2+1}
$$

をみたす。このとき、$f(x)$ の最大値を求めよ。

解答形式

求める最大値は $\frac{p}{q}$ ($p,q$は自然数) と書ける。$p,q$ の値をそれぞれ1,2行目に半角数字で入力せよ。なお、できるだけ約分した形で答えよ。

[A] Don't Expand It!

masorata 自動ジャッジ 難易度:
2年前

19

問題文

$$
1+(2^1+1)(2^2+1)(2^4+1)(2^8+1)(2^{16}+1)(2^{32}+1)
$$

は、$2$ で最大何回割り切れるか。

解答形式

半角数字のみで答えよ。
たとえば $5555$ 回割り切れると答えるのであれば1行目に
5555
と入力せよ。

Second Number

okapin 自動ジャッジ 難易度:
2年前

18

問題文

$\sqrt[10] {10}$ の小数第一位の値を求めよ。
ただし, $\log_{10}{2}=0.3010$ とする。

解答形式

答えを半角数字で入力してください。

[E] modじゃんけん

hinu 自動ジャッジ 難易度:
2年前

11

問題文

$n\;(\geq 2)$ を自然数とするとき,以下の試行を行うことを考える。


試行

  • $n$ 人が $0,1,2$ のいずれかひとつの数を無作為に選ぶ。
  • 人 $i\; (i=1,2,\cdots, n)$ が選んだ数を $a_i$ とする。各人 $i$ に対して,
    $$
    a_i\equiv\sum_{j=1}^n a_j\; ({\rm mod} \; 3)
    $$ならば人 $i$ は生存し,そうでないなら脱落する。この試行をmodじゃんけんと呼ぶことにする。

$n$ 人がmodじゃんけんを $1$ 回行い,全員が生存するか全員が脱落するとき,modじゃんけんの結果はあいこになると定義する。

$n$ 人がmodじゃんけんを $1$ 回行ってあいこになる確率を $p_n$ とするとき

$$
p_2=\frac{\fbox{ア}}{\fbox{イ}},\; p_3=\frac{\fbox{ウ}}{\fbox{エ}},\; p_4=\frac{\fbox{オ}}{\fbox{カキ}}
$$

である。$n$ を $\fbox{ク}$ で割った余りが $\fbox{ケ}$ であるとき

$$
p_n=\frac{\fbox{コ}^{n}+\fbox{サ}}{\fbox{シ}^n}
$$

であり,そうでないときには

$$
p_n=\frac{\fbox{コ}^{n}+\fbox{ス}}{\fbox{シ}^n}
$$

である。また,

$$
\lim_{n\to\infty} p_n=\fbox{セ}
$$

が成り立つ。

解答形式

空欄 $\fbox{ア}$ 〜 $\fbox{セ}$ には,半角数字 0 - 9 または記号 - のいずれかが当てはまります。$\fbox{ア}$ 〜 $\fbox{セ}$ に当てはまるものを改行区切りで入力してください。分数はこれ以上約分できない形で解答してください。

求面積問題2

Kinmokusei 自動ジャッジ 難易度:
2年前

8

問題文

緑色の線分の長さは1です。
このとき、円の面積を求めてください。
図中の赤点はそれを含む線分の中点です。

解答形式

答えは(分数)×πの形になります。
分子を1行目に、分母を2行目に半角数字で入力してください。
ただし、既約分数の形で解答してください。
例: (10/3)π → 1行目に10、2行目に3

[A] Natural Number

okapin 自動ジャッジ 難易度:
2年前

49

問題文

$\dfrac{n^2+2020}{2n}$が自然数となるような自然数$n$の総和を求めよ。

解答形式

解答を半角数字で入力してください。