相異なる正の整数$a, b,c, d,k$が $$a^2 + b^2 = c^2 + d^2 = k$$ を満たすものとします。$k$の最小値を求めてください。
半角数字で回答してください。
答えは100以下です。
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
$1\thicksim6$までの数字を$1$回ずつ使って空欄を埋め以下の等式を成立させてください。解が存在しない場合はその旨を答えてください。
$(1)\square\square\times\square=\square\square\square$ $(2)\square\square+\square\square=\square\square$
1行目に$(1)$、2行目に$(2)$の解を入力してください。 等式をすべて半角で入力してください。ただし、「$\times$」はx(小文字のエックス)で代用するものとします。 存在しない場合は-1を入力してください。 また、解が複数存在する場合はどれを回答してもかまいません。
x
-1
(例) $3\times7=21$と入力する場合 3x7=21 $3+7=21$と入力する場合 3+7=10
3x7=21
3+7=10
次の条件(a), (b)をともに満たす自然数($1$ 以上の整数)$\rm{A}$ の最小値を求めよ。
(a) $\rm{A}$ は連続する $3$ つの自然数の和である。
(b) $\rm{A}$ を $10$ 進法で表したとき、$1$ が連続して $9$ 回以上現れるところがある。
半角数字のみで1行目に入力せよ。
$x^4+4$ を因数分解せよ。また、この結果を用いて $50629$ を素因数分解せよ。
50629の素因数を小さい順に1,2,3......行目に半角数字で入力せよ。
青い三角形の面積が6のとき、外側の正方形の面積を求めてください。 なお、正方形と円は図中の赤で示した点で接します。
正方形の面積を半角数字で入力してください。
$n$ を正の整数とする。$f(n)=\sqrt{n^4+2n+61\ }$ が整数となるような $n$ を $1$ つ選び、そのときの $f(n)$ の値を答えよ。
なお、$f(n)$ が整数とならない場合や、答えた $f(n)$ の値が正しくない場合は不正解とする。
正解した場合は、まず解説を見よ。また、他のユーザーの回答も見てみよ。
あなたが選んだ $n$ における $f(n)$ の値を半角数字で1行目に入力せよ。
$7^{7^7}$ を $777$ で割ったあまりを求めよ。
(注:$7^{7^7}$ は「 $7$ の「 $7$ の $7$ 乗」乗」を表すものとする。)
$0$ 以上 $776$ 以下の整数を、半角数字で1行目に入力せよ。
関数 $f(x)$ は、すべての実数 $x$ に対して
$$ f(x)=2f(-x)+\frac{3x}{x^2+1} $$
をみたす。このとき、$f(x)$ の最大値を求めよ。
求める最大値は $\frac{p}{q}$ ($p,q$は自然数) と書ける。$p,q$ の値をそれぞれ1,2行目に半角数字で入力せよ。なお、できるだけ約分した形で答えよ。
$n$ を整数とする。$x$ の整式
$$ x^4+(3n+2)x^3+(n^2+5)x^2+nx-1 $$
が整数係数の範囲でさらに因数分解できるような $n$ をすべて求めよ。
$n$の値を小さい順に1,2,3,......行目にすべて半角で入力せよ。たとえば $n=-123, 45, 678$ と解答する場合、1行目に「-123」、2行目に「45」、3行目に「678」と入力せよ。
【補助線主体の図形問題 #005】 今回の図形問題は入試問題にもありそうな設定にしてみました。暗算でも処理しやすいように数値を調整してあります。腕に覚えのある方は頭の中だけで処理しきってみてください。
${ \def\cm{\thinspace \mathrm{cm}} \def\mytri#1{\triangle \mathrm{#1}} \def\jsim{\mathrel{\unicode[sans-serif]{x223D}}} }$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。 (例) $12\cm$ → $\color{blue}{12.00}$ $10\sqrt{2}\cm$ → $\color{blue}{14.14}$ $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$ 入力を一意に定めるための処置です。 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。
(1)$\displaystyle \tan\theta=\frac{1}{4}$ のとき、$\displaystyle \tan2\theta=\frac{\fbox{ア}}{\fbox{イウ}}$ である。
(2)連立方程式
$$ \begin{cases} x_1=x_2(2+x_1x_2) \\ x_2=x_3(2+x_2x_3) \\ x_3=x_4(2+x_3x_4) \\ x_4=x_1(2+x_4x_1) \end{cases} $$
を満たす実数 $(x_1,x_2,x_3,x_4)$ の組は全部で $\fbox{エオ}$ 個あり、そのうち $\tan20^\circ < x_1 < \tan80^\circ$ を満たすような組は $\fbox{カ}$ 個ある。
ア〜カには、0から9までの数字が入る。 (1)の答えとして、文字列「アイウ」を半角で1行目に入力せよ。 (2)の答えとして、文字列「エオカ」を半角で1行目に入力せよ。
以下の文がそれぞれ正しくなるように、空欄に $0$ から $9$ までの数字を埋めよ。ただし、同じ文字の空欄には同じ文字が入る。
(1)数列 $\fbox{ア}, \fbox{イ}, \fbox{ウ}, \fbox{エ},\fbox{オ}$ には、 $0$ が $\fbox{ア}$ 回、$1$ が $\fbox{イ}$ 回、$2$ が $\fbox{ウ}$ 回、$3$ が $\fbox{エ}$ 回、$4$ が $\fbox{オ}$ 回、それぞれ現れる。
(2)数列 $\fbox{カ}, \fbox{キ}, \fbox{ク}, \fbox{ケ}, \fbox{コ}, \fbox{サ}, \fbox{シ}, \fbox{ス}, \fbox{セ}, \fbox{ソ}$ には、 $0$ が $\fbox{カ}$ 回、$1$ が $\fbox{キ}$ 回、$2$ が $\fbox{ク}$ 回、$3$ が $\fbox{ケ}$ 回、$4$ が $\fbox{コ}$ 回、 $5$ が $\fbox{サ}$ 回、$6$ が $\fbox{シ}$ 回、$7$ が $\fbox{ス}$ 回、$8$ が $\fbox{セ}$ 回、$9$ が $\fbox{ソ}$ 回、それぞれ現れる。
ア〜ソには、0から9までの数字が入る。 (1)の答えとして、文字列「アイウエオ」を半角で1行目に入力せよ。 (2)の答えとして、文字列「カキクケコサシスセソ」を半角で2行目に入力せよ。
【補助線主体の図形問題 #009】 今日の問題はとびっきりシンプルにしてみました。補助線でガリガリ計算することもできますが、ある発想があれば暗算一発で解くことも可能です。いろいろな可能性を探ってみてください。
${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。 (例) $12\cm^2$ → $\color{blue}{12.00}$ $10\sqrt{2}\cm^2$ → $\color{blue}{14.14}$ $\dfrac{1+\sqrt{5}}{2} \cm^2$ → $\color{blue}{1.62}$ 入力を一意に定めるための処置です。 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。