メンテナンス終了のお知らせ (2021年7月31日10:54)
システムの不具合により、アクセスできない状態となっておりましたが、システムを復旧し、ご利用いただけるようになりました。 ご不便をおかけし、大変申し訳ございませんでした。

[A] 東大レベル!

masorata 自動ジャッジ 難易度: 数学 > 高校数学
2020年10月17日10:00 正解数: 39 / 解答数: 46 ギブアップ不可
まそらた杯
この問題はコンテスト「第1回まそらた杯」の問題です。

全 46 件

回答日時 問題 解答者 結果
2021年7月4日2:21 [A] 東大レベル! ゲスト
正解
2021年5月28日10:49 [A] 東大レベル! ゲスト
正解
2021年5月14日22:45 [A] 東大レベル! Michael
正解
2021年4月1日11:36 [A] 東大レベル! tima_C
正解
2021年1月5日13:49 [A] 東大レベル! watero00
正解
2020年12月14日7:43 [A] 東大レベル! minaduki_foo
正解
2020年10月31日8:41 [A] 東大レベル! ゲスト
不正解 (0/1)
2020年10月30日18:32 [A] 東大レベル! minaduki_foo
正解
2020年10月22日22:54 [A] 東大レベル! tsukasa
正解
2020年10月21日23:28 [A] 東大レベル! baba
正解
2020年10月18日22:25 [A] 東大レベル! ゲスト
正解
2020年10月18日22:21 [A] 東大レベル! ゲスト
正解
2020年10月18日13:53 [A] 東大レベル! maborosigin
正解
2020年10月18日13:18 [A] 東大レベル! tantal
正解
2020年10月18日5:29 [A] 東大レベル! takeheroaf
正解
2020年10月18日2:51 [A] 東大レベル! _sekizett
正解
2020年10月18日2:05 [A] 東大レベル! mathyuuugo
正解
2020年10月18日1:07 [A] 東大レベル! pn8128
正解
2020年10月18日1:04 [A] 東大レベル! pn8128
不正解 (0/1)
2020年10月18日0:50 [A] 東大レベル! Ricky_pon
正解
2020年10月18日0:49 [A] 東大レベル! Ricky_pon
不正解 (0/1)
2020年10月17日21:18 [A] 東大レベル! Osmium_1008
正解
2020年10月17日21:04 [A] 東大レベル! tanimoto
正解
2020年10月17日17:28 [A] 東大レベル! sapphire15
正解
2020年10月17日17:24 [A] 東大レベル! Benzenehat
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

9月前

31

問題文

$7^{7^7}$ を $777$ で割ったあまりを求めよ。

(注:$7^{7^7}$ は「 $7$ の「 $7$ の $7$ 乗」乗」を表すものとする。)

解答形式

$0$ 以上 $776$ 以下の整数を、半角数字で1行目に入力せよ。

[B] キメラ漸化式

masorata 自動ジャッジ 難易度:
9月前

26

問題文

$N$ を正の整数として、以下の条件をすべて満たす数列 $\{a_n \}$ $(n=1,2,...)$ を考える。

・$a_1=1$
・$a_N=2020$
・すべての正の整数 $n$ について $\displaystyle \frac{a_{n+1}}{a_n}+\frac{4a_n}{a_{n+1}}=\frac{1}{a_n}- \frac{2}{a_{n+1}}+4$ が成り立つ。

このとき、$N=\fbox{アイ}$ である。また $a_7=\fbox{ウエオ}$ である。

解答形式

ア〜オには、0から9までの数字が入る。
$N=\fbox{アイ}$ の答えとして、文字列「アイ」をすべて半角で1行目に入力せよ。
$a_7=\fbox{ウエオ}$ の答えとして、文字列「ウエオ」をすべて半角で2行目に入力せよ。

9月前

25

問題文

$f(x)=-16x^3+24x^2-9x+1$ とおく。以下の問いに答えよ。

⑴ 以下の式が $\theta$ の恒等式になるように空欄を埋めよ。なお、同じ文字の空欄には同じ数が入る。

$$
f\left( \frac{\fbox{ア}+\sin\theta}{\fbox{イ}}\right)=\frac{\fbox{ア}+\sin(\fbox{ウ}\theta)}{\fbox{イ}}
$$

⑵ 次の定積分を求めよ。
$$
\int_ {0.5} ^{0.75} f(f(f(x))) dx = \frac{\fbox{エオカ}}{\fbox{キクケコ}}
$$

解答形式

ア〜コには、0から9までの数字が入る。
⑴の答えとして、文字列「アイウ」をすべて半角で1行目に入力せよ。
⑵の答えとして、文字列「エオカキクケコ」をすべて半角で2行目に入力せよ。
ただし、分数はそれ以上約分できない形で答えよ。


問題文

$n$ を正の整数とする。$f(n)=\sqrt{n^4+2n+61\ }$ が整数となるような $n$ を $1$ つ選び、そのときの $f(n)$ の値を答えよ。

なお、$f(n)$ が整数とならない場合や、答えた $f(n)$ の値が正しくない場合は不正解とする。

正解した場合は、まず解説を見よ。また、他のユーザーの回答も見てみよ。

解答形式

あなたが選んだ $n$ における $f(n)$ の値を半角数字で1行目に入力せよ。


問題文

$a$ を実数の定数とする。正の実数値をとる関数 $y(x)$ は何回でも微分可能で、

$$
\begin{cases}
2yy''''+(y'')^2=2y'y'''+a & (x \in {\mathbb R})\\
y'(0)=y''(0)=0 \\
y'''(0)=y''''(0)=1
\end{cases}
$$

を満たすとする。$\displaystyle a=\frac{50}{17}$ のとき、($x$ が実数全体を動くときの)$y(x)$ の最小値は $\displaystyle \frac{\fbox{アイ}}{\fbox{ウエオ}}$ である。

解答形式

ア〜オには、0から9までの数字が入る。
文字列「アイウエオ」をすべて半角で1行目に入力せよ。
ただし、それ以上約分できない形で答えよ。

[A] Don't Expand It!

masorata 自動ジャッジ 難易度:
9月前

14

問題文

$$
1+(2^1+1)(2^2+1)(2^4+1)(2^8+1)(2^{16}+1)(2^{32}+1)
$$

は、$2$ で最大何回割り切れるか。

解答形式

半角数字のみで答えよ。
たとえば $5555$ 回割り切れると答えるのであれば1行目に
5555
と入力せよ。

[A] Natural Number

okapin 自動ジャッジ 難易度:
10月前

24

問題文

$\dfrac{n^2+2020}{2n}$が自然数となるような自然数$n$の総和を求めよ。

解答形式

解答を半角数字で入力してください。

8月前

18

問題文

(1)$\displaystyle \tan\theta=\frac{1}{4}$ のとき、$\displaystyle \tan2\theta=\frac{\fbox{ア}}{\fbox{イウ}}$ である。

(2)連立方程式

$$
\begin{cases}
x_1=x_2(2+x_1x_2) \\
x_2=x_3(2+x_2x_3) \\
x_3=x_4(2+x_3x_4) \\
x_4=x_1(2+x_4x_1)
\end{cases}
$$

を満たす実数 $(x_1,x_2,x_3,x_4)$ の組は全部で $\fbox{エオ}$ 個あり、そのうち $\tan20^\circ < x_1 < \tan80^\circ$ を満たすような組は $\fbox{カ}$ 個ある。

解答形式

ア〜カには、0から9までの数字が入る。
(1)の答えとして、文字列「アイウ」を半角で1行目に入力せよ。
(2)の答えとして、文字列「エオカ」を半角で1行目に入力せよ。

Square Taxi

sapphire15 自動ジャッジ 難易度:
14月前

163

問題文

相異なる正の整数$a, b,c, d,k$が
$$a^2 + b^2 = c^2 + d^2 = k$$
を満たすものとします。$k$の最小値を求めてください。

解答形式

半角数字で回答してください。

備考

  • 6/10 14:26 問題文を「非負整数」→「正の整数」に修正しました。

[B] Triangles 1

halphy 自動ジャッジ 難易度:
9月前

12

問題文

$k>0$ を整数の定数とする。以下の条件

$$
{\rm AB}=8, {\rm AC}=k, \angle {\rm ABC}=60^{\circ}
$$

を満たす三角形 ${\rm ABC}$ が存在するような整数 $k$ の最小値は $\fbox{\text{ア}}$ である。

また,条件を満たす三角形 ${\rm ABC}$ が一意的に存在するような整数 $k$ の最小値は $\fbox{イ}$ である。

ただし,互いに合同であるような $2$ つの三角形は区別しない。

解答形式

空欄 $\fbox{ア}$ 〜 $\fbox{イ}$ には,半角数字 0 - 9 のいずれかが当てはまります。$\fbox{ア}$ 〜 $\fbox{イ}$ に当てはまるものを改行区切りで入力してください。

[A] minimum value (easy)

okapin 自動ジャッジ 難易度:
9月前

11

問題文

原点$O$とする$xy$平面上で点$(3,2)$を通る傾き負の直線と$x$軸,$y$軸との交点をそれぞれ$A,B$とするとき、$\triangle OAB$の面積の最小値を求めよ。

解答形式

整数または既約分数で答えてください。
半角で入力してください。

One to Six

sapphire15 自動ジャッジ 難易度:
13月前

20

問題文

$1\thicksim6$までの数字を$1$回ずつ使って空欄を埋め以下の等式を成立させてください。解が存在しない場合はその旨を答えてください。

$(1)\square\square\times\square=\square\square\square$
$(2)\square\square+\square\square=\square\square$

解答形式

1行目に$(1)$、2行目に$(2)$の解を入力してください。
等式をすべて半角で入力してください。ただし、「$\times$」はx(小文字のエックス)で代用するものとします。
存在しない場合は-1を入力してください。
また、解が複数存在する場合はどれを回答してもかまいません。

(例)
$3\times7=21$と入力する場合 3x7=21
$3+7=21$と入力する場合 3+7=10