都合のいいn

masorata 自動ジャッジ 難易度: 数学 > 高校数学
2020年6月6日14:40 正解数: 41 / 解答数: 66 (正答率: 62.1%) ギブアップ不可
整数 代数

全 66 件

回答日時 問題 解答者 結果
2020年6月8日14:54 都合のいいn ゲスト
正解
2020年6月8日14:46 都合のいいn ゲスト
不正解
2020年6月8日14:46 都合のいいn ゲスト
不正解
2020年6月8日14:33 都合のいいn halphy
正解
2020年6月8日10:20 都合のいいn ゲスト
正解
2020年6月7日10:59 都合のいいn BUTATA
正解
2020年6月6日23:08 都合のいいn ofukufukufuku
正解
2020年6月6日20:29 都合のいいn ゲスト
正解
2020年6月6日17:33 都合のいいn ゲスト
正解
2020年6月6日16:09 都合のいいn mochimochi
正解
2020年6月6日15:58 都合のいいn mochimochi
不正解
2020年6月6日15:58 都合のいいn mochimochi
不正解
2020年6月6日15:54 都合のいいn mochimochi
不正解
2020年6月6日15:54 都合のいいn mochimochi
不正解
2020年6月6日15:51 都合のいいn mochimochi
不正解
2020年6月6日15:23 都合のいいn ゲスト
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

hinu積分03

hinu 自動ジャッジ 難易度:
5年前

20

問題文

定積分

$$
\int_0^1 (\sqrt[7]{1-x^{11}}-\sqrt[11]{1-x^{7}})dx
$$

を求めよ。

解答形式

値は半角数字で記述せよ。無理数などを用いたい場合は必要ならばTeX記法により記述せよ。

[A] Natural Number

okapin 自動ジャッジ 難易度:
5年前

72

問題文

$\dfrac{n^2+2020}{2n}$が自然数となるような自然数$n$の総和を求めよ。

解答形式

解答を半角数字で入力してください。

hinu問題02

hinu 自動ジャッジ 難易度:
5年前

46

問題文

$a,b,c$ を実数とする。次の連立方程式を解け。

$$
a^2-4b-1=0\\
b^2-8c+28=0\\
c^2-6a+2=0\\
$$

解答形式

a,b,cを半角数字として(a,b,c)で解答してください。無理数などを使いたい場合はTeXコマンドを使用してください。

求面積問題2

Kinmokusei 自動ジャッジ 難易度:
5年前

13

問題文

緑色の線分の長さは1です。
このとき、円の面積を求めてください。
図中の赤点はそれを含む線分の中点です。

解答形式

答えは(分数)×πの形になります。
分子を1行目に、分母を2行目に半角数字で入力してください。
ただし、既約分数の形で解答してください。
例: (10/3)π → 1行目に10、2行目に3

鏡の中のf(x)

masorata 自動ジャッジ 難易度:
5年前

84

問題文

関数 $f(x)$ は、すべての実数 $x$ に対して

$$
f(x)=2f(-x)+\frac{3x}{x^2+1}
$$

をみたす。このとき、$f(x)$ の最大値を求めよ。

解答形式

求める最大値は $\frac{p}{q}$ ($p,q$は自然数) と書ける。$p,q$ の値をそれぞれ1,2行目に半角数字で入力せよ。なお、できるだけ約分した形で答えよ。

整数問題①

lucy 自動ジャッジ 難易度:
5年前

30

問題文

$x!+2=y^4+5y$を満たす自然数$(x,y)$の組をすべて求めよ。

解答形式

以下の文章に入る$a,b,c$の値を入力せよ。1行目に$a$を、2行目に$b$を、3行目に$c$を入力すること。

条件を満たす自然数の組は$a$組存在する。その組の中で、$x$が最大となるような組は$(x,y)=(b,c)$である。

One to Six

sapphire15 自動ジャッジ 難易度:
5年前

39

問題文

$1\thicksim6$までの数字を$1$回ずつ使って空欄を埋め以下の等式を成立させてください。解が存在しない場合はその旨を答えてください。

$(1)\square\square\times\square=\square\square\square$
$(2)\square\square+\square\square=\square\square$

解答形式

1行目に$(1)$、2行目に$(2)$の解を入力してください。
等式をすべて半角で入力してください。ただし、「$\times$」はx(小文字のエックス)で代用するものとします。
存在しない場合は-1を入力してください。
また、解が複数存在する場合はどれを回答してもかまいません。

(例)
$3\times7=21$と入力する場合 3x7=21
$3+7=21$と入力する場合 3+7=10

tan三兄弟

masorata 自動ジャッジ 難易度:
5年前

34

問題文

実数 $A,B,C \ (-\pi/2<A<B<C<\pi/2)$ が

$$
\frac{1+\tan^3{A}}{1+3\tan^2A}=\frac{1+\tan^3{B}}{1+3\tan^2B}=\frac{1+\tan^3{C}}{1+3\tan^2C}\\
$$

をみたして動くとき、$\tan{(A+B+C)}$ がとりうる値の範囲を求めよ。

解答形式

解は $ m<\tan{(A+B+C)}< M$ の形で、$m,M$ はどちらも整数である。
$m,M$の値をそれぞれ1,2行目に半角数字で入力せよ。
例えば $m=-33, M=4$ と解答する場合、1行目に「-33」、2行目に「4」と入力せよ。

(20/06/21: よりシンプルな問題文に直しました。答えはそのままです。)

50629の素因数分解

masorata 自動ジャッジ 難易度:
5年前

72

問題文

$x^4+4$ を因数分解せよ。また、この結果を用いて $50629$ を素因数分解せよ。

解答形式

50629の素因数を小さい順に1,2,3......行目に半角数字で入力せよ。

よじさんじ

masorata 自動ジャッジ 難易度:
5年前

13

問題文

実数$ a $ を $a=\sqrt[3]{1+\sqrt2} +\sqrt[3]{1-\sqrt2}$ で定める。以下の問いに答えよ。

⑴ $a^3+3a-2=0$ であることを示せ。また、$0<a<2$ を示せ。

⑵ $x$ について以下の恒等式が成り立つことを示せ。
$$
x^4+4x-3=(x^2+a)^2-2a\left(x-\frac{1}{a}\right)^2
$$

⑶ 4次方程式 $x^4+4x-3=0$ の実数解を $a$ を用いて表せ。

解答形式

⑶のみ解答せよ。解は2つ存在し、
$$
x= -\sqrt{\frac{ア}{イ}}\ \pm \ \sqrt{\sqrt{\frac{ウ}{エ}}-\frac{オ}{カ}}
$$

の形である。ア~カのそれぞれには1から9までの自然数または文字$a$が入る。
ア~カに当てはまる数字または文字を、順にすべて半角で入力せよ。
たとえばア=2、イ=7、ウ=3、エ=5、オ=8、カ=$a$ と解答する場合は、
「27358a」と入力せよ。

最大・最小問題

zyogamaya 自動ジャッジ 難易度:
5年前

21

問題文

$a,b,c$がいずれも正の実数であり、$a+b+c=5,abc=1$が成り立つとき、$ab+bc+ca$の最小値を求めよ。

解答形式

答えは既約分数になります。/を用いて入力してください。
例:$\displaystyle\frac{5}{7}$→5/7

求長問題2

Kinmokusei 自動ジャッジ 難易度:
5年前

12

問題文

直径10の半円中に、直径の和が10となる2つの半円を図のように配置します。点Aを大半円の弧上にとり、線分AB,ACと小半円の交点をD,Eとします。
$BD^2+DE^2+EC^2$が最小となるようにしたとき、その最小値を求めてください。

解答形式

半角数字で解答してください。