最大・最小問題

zyogamaya 自動ジャッジ 難易度: 数学 > 高校数学
2021年1月15日17:36 正解数: 12 / 解答数: 19 (正答率: 63.2%) ギブアップ数: 1

全 19 件

回答日時 問題 解答者 結果
2024年2月29日22:56 最大・最小問題 Prime-Quest
正解
2023年12月15日22:59 最大・最小問題 shakayami
正解
2023年12月13日21:04 最大・最小問題 sdzzz
不正解
2023年12月12日20:47 最大・最小問題 nmoon
正解
2023年12月12日20:40 最大・最小問題 nmoon
不正解
2023年11月8日2:13 最大・最小問題 natsuneko
正解
2023年11月4日9:15 最大・最小問題 SigmaArf
不正解
2023年10月16日21:06 最大・最小問題 mochimochi
正解
2023年7月20日0:27 最大・最小問題 miq_39
正解
2023年7月19日23:40 最大・最小問題 miq_39
不正解
2022年12月16日1:24 最大・最小問題 ゲスト
正解
2022年12月15日21:09 最大・最小問題 ゲスト
不正解
2022年12月15日17:39 最大・最小問題 ゲスト
不正解
2022年4月12日11:26 最大・最小問題 tima_C
正解
2021年11月26日14:38 最大・最小問題 footballOMF
正解
2021年10月27日21:58 最大・最小問題 ゲスト
不正解
2021年9月10日20:11 最大・最小問題 naoperc
正解
2021年5月20日10:35 最大・最小問題 mochimochi
正解
2021年1月16日5:26 最大・最小問題 baba
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

2元7次不定方程式

zyogamaya 自動ジャッジ 難易度:
3年前

12

問題文

$x,y$を整数とする。不定方程式$x^7+17y=3$の解$x$をすべて求めよ。

解答形式

答えは、$n$を整数とし、
$x=[ab]n+[cd]$
($a,b,c,d$は一桁の自然数)
という形をしています。$a,b,c,d$の値を求め、$abcd$(4桁の自然数)を入力してください。

求面積問題5

Kinmokusei 自動ジャッジ 難易度:
3年前

8

問題文

正方形が2つ、図のように配置されています。赤い線分の長さが20のとき、緑で示した四角形の面積を求めてください。
ただし、図中の青点はそれぞれの正方形の対角線の交点です。

解答形式

半角数字で解答してください。

無理関数の最大値

zyogamaya 自動ジャッジ 難易度:
3年前

11

問題文

関数
$f(x)=\sqrt[3]{-(x+4)(2x+3)(3x-8)}\ \left(\displaystyle -\frac{3}{2} \leq x \leq \frac{8}{3}\right)$
の最大値を求めよ。

解答形式

半角数字またはTeXを入力してください。

求長問題6

Kinmokusei 自動ジャッジ 難易度:
3年前

8

問題文

図のように配置された図形で、半円の半径が$5$、赤、青、緑の線分の長さがそれぞれ$3,X,Y$のとき、$X^2+Y^2$の値を求めてください。

解答形式

半角数字で解答してください。

求面積問題7

Kinmokusei 自動ジャッジ 難易度:
3年前

14

問題文

三角形の外側に3つの正方形を図のように作りました。橙・緑・紫の線分の長さを3辺の長さとする三角形(赤い三角形)の面積が57のとき、元の三角形(青い三角形)の面積を求めてください。

解答形式

半角数字で解答してください。

求面積問題8

Kinmokusei 自動ジャッジ 難易度:
3年前

13

問題文

△ABCと点Pをとり、△ABP, △BCP, △CAPの重心をそれぞれ$G_1, G_2, G_3$とします。青で示した3つの三角形の面積の和が10のとき、$△G_1G_2G_3$(赤い三角形)の面積を求めてください。

解答形式

半角数字で解答してください。

二重根号

zyogamaya 自動ジャッジ 難易度:
3年前

14

問題文

実数$x$の方程式$3\sqrt{x+1-4\sqrt{x-3}}=x-1$を解け。

解答形式

半角数字、またはTexで解答してください。$x=$は書かなくて良いです。

整数問題(倍数)

zyogamaya 自動ジャッジ 難易度:
3年前

15

問題文

$f(x)=x^3+7x+6$の値が63の倍数になるような2桁の自然数$x$をすべて求めよ。

解答形式

解1つごとに改行して上から小さい順に半角数字で入力してください。$x=$は書かなくて良いです。

求面積問題14

Kinmokusei 自動ジャッジ 難易度:
3年前

12

問題文

周の長さが30である長方形ABCDがあります。辺CD上に∠APB=90°となるような点Pをとれるとき、長方形ABCDの面積の最大値を求めてください。

解答形式

半角数字で解答してください。

求値問題

Kinmokusei 自動ジャッジ 難易度:
3年前

6

問題文

三角形の3つの内角の大きさを$A,B,C$とします。このとき、次の式の最小値を求めてください。
$$
\frac{1-\cos A}{\cos B+\cos C}+\frac{1-\cos B}{\cos C+\cos A}+\frac{1-\cos C}{\cos A+\cos B}
$$

解答形式

最小値は$\frac {[ア]}{[イ]}$となります。$[ア]+[イ]$を解答してください。
ただし、$[ア],[イ]$にはそれぞれ自然数が入り、その最大公約数は$1$とします。

求面積問題3

Kinmokusei 自動ジャッジ 難易度:
3年前

12

問題文

図中の青い線分の長さはすべて10,赤で示した角はすべて等しいです。
このとき、緑色部分(凹四角形)の面積を求めてください。
解答形式に注意!

解答形式

$答えはA\sqrt{B}の形になります。(A,Bは自然数)$
$A+Bを解答してください。$
$<注意>$
$根号の中が最小となるようにしてください。$
$半角数字で解答してください。$
$例 : green area=10\sqrt{8}=20\sqrt{2}→A=20,B=2→22 と解答$

求長問題4

Kinmokusei 自動ジャッジ 難易度:
3年前

7

問題文

正七角形2つが図のように配置されています。
赤色の線分の長さが7のとき、青色の線分の長さを求めてください。

解答形式

半角数字で解答してください。