求面積問題14

Kinmokusei 自動ジャッジ 難易度: 数学 > 高校数学
2020年12月5日19:26 正解数: 6 / 解答数: 8 (正答率: 75%) ギブアップ数: 1

全 8 件

回答日時 問題 解答者 結果
2021年9月21日1:04 求面積問題14 ゲスト
正解
2021年8月13日15:42 求面積問題14 mochimochi
正解
2021年4月13日10:09 求面積問題14 ゲスト
正解
2021年3月24日17:01 求面積問題14 tima_C
正解
2020年12月18日10:20 求面積問題14 minaduki_foo
不正解
2020年12月18日10:19 求面積問題14 minaduki_foo
不正解
2020年12月9日4:19 求面積問題14 baba
正解
2020年12月5日20:56 求面積問題14 masorata
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

求面積問題13

Kinmokusei 自動ジャッジ 難易度:
2年前

5

問題文

図のように正方形・半円が配置されています。正方形の一辺の長さが2であるとき、青で示した部分の面積(の合計)を求めてください。

解答形式

半角数字で解答してください。

求長問題4

Kinmokusei 自動ジャッジ 難易度:
2年前

4

問題文

正七角形2つが図のように配置されています。
赤色の線分の長さが7のとき、青色の線分の長さを求めてください。

解答形式

半角数字で解答してください。

求値問題

Kinmokusei 自動ジャッジ 難易度:
2年前

3

問題文

三角形の3つの内角の大きさを$A,B,C$とします。このとき、次の式の最小値を求めてください。
$$
\frac{1-\cos A}{\cos B+\cos C}+\frac{1-\cos B}{\cos C+\cos A}+\frac{1-\cos C}{\cos A+\cos B}
$$

解答形式

最小値は$\frac {[ア]}{[イ]}$となります。$[ア]+[イ]$を解答してください。
ただし、$[ア],[イ]$にはそれぞれ自然数が入り、その最大公約数は$1$とします。

求面積問題11

Kinmokusei 自動ジャッジ 難易度:
2年前

4

問題文

【解答形式に注意!】

半径と中心角が等しい扇形に正方形が内接しています。青い正方形と赤い正方形の面積の大小関係を調べてください。
ただし、同じ印をつけた部分の長さは等しいです。

解答形式

(青の面積) > (赤の面積) なら 1
(青の面積) = (赤の面積) なら 2
(青の面積) < (赤の面積) なら 3
を、半角数字で解答してください。

求面積問題5

Kinmokusei 自動ジャッジ 難易度:
2年前

3

問題文

正方形が2つ、図のように配置されています。赤い線分の長さが20のとき、緑で示した四角形の面積を求めてください。
ただし、図中の青点はそれぞれの正方形の対角線の交点です。

解答形式

半角数字で解答してください。

求角問題4

Kinmokusei 自動ジャッジ 難易度:
2年前

3

問題文

正六角形2つが図のように配置されています。赤い線分と青い線分の長さの比が1:4であるとき、緑で示した角Yの角度を求めてください。
ただし、図中"center"で示した点は正六角形の外心です。

解答形式

0~360までの半角数字で、「°」や「度」をつけずに解答してください。

求面積問題10

Kinmokusei 自動ジャッジ 難易度:
2年前

4

問題文

図中の赤い線分の長さが10のとき、青で示した四角形の面積を求めてください。

解答形式

半角数字で解答してください。

求面積問題15

Kinmokusei 自動ジャッジ 難易度:
22月前

8

問題文

緑色の五角形の面積を求めてください。
紫でしめした3つの角は等しく、赤同士、青同士の線分はそれぞれ等しい長さです。

解答形式

半角数字で解答してください。

求長問題11

Kinmokusei 自動ジャッジ 難易度:
23月前

9

問題文

長方形$ABCD$を底面とする四角錐$P-ABCD$があります。$PA=1,PB=4,PC=8$のとき、$PD$の長さを求めてください。

解答形式

半角数字で解答してください。

求長問題3

Kinmokusei 自動ジャッジ 難易度:
2年前

5

問題文

2つの正六角形が図のように配置されています。
赤い線分の長さが10のとき、青い線分の長さを求めてください。
ただし、図中"center"で示した点は各正六角形の外心です。

解答形式

半角数字で解答してください。

求角問題2

Kinmokusei 自動ジャッジ 難易度:
2年前

12

問題文

半円2つが図のように配置されています。
赤い線分と青い線分は長さの比が1:2です。
このとき、Xの角度を求めてください。

解答形式

半角数字で入力してください。
「度」や「°」は付けないでください。
例:X=57° → 57

整数問題(倍数)

zyogamaya 自動ジャッジ 難易度:
2年前

11

問題文

$f(x)=x^3+7x+6$の値が63の倍数になるような2桁の自然数$x$をすべて求めよ。

解答形式

解1つごとに改行して上から小さい順に半角数字で入力してください。$x=$は書かなくて良いです。