hinu積分01

hinu 自動ジャッジ 難易度: 数学 > 高校数学
2020年6月1日4:47 正解数: 4 / 解答数: 8 (正答率: 50%) ギブアップ不可

全 8 件

回答日時 問題 解答者 結果
2020年6月22日1:01 hinu積分01 pichipichipizza
不正解
2020年6月11日9:38 hinu積分01 okapin
正解
2020年6月6日22:04 hinu積分01 sapphire15
正解
2020年6月6日16:47 hinu積分01 mochimochi
正解
2020年6月6日16:35 hinu積分01 mochimochi
不正解
2020年6月6日16:35 hinu積分01 mochimochi
不正解
2020年6月6日16:34 hinu積分01 mochimochi
不正解
2020年6月3日1:54 hinu積分01 baba
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

整数問題①

lucy 自動ジャッジ 難易度:
4月前

10

問題文

$x!+2=y^4+5y$を満たす自然数$(x,y)$の組をすべて求めよ。

解答形式

以下の文章に入る$a,b,c$の値を入力せよ。1行目に$a$を、2行目に$b$を、3行目に$c$を入力すること。

条件を満たす自然数の組は$a$組存在する。その組の中で、$x$が最大となるような組は$(x,y)=(b,c)$である。

求角問題5

Kinmokusei 自動ジャッジ 難易度:
33日前

3

問題文

図のように正六角形・扇形・その接線があります。Xで示した角の大きさを求めてください。

解答形式

0以上360未満の半角数字で解答してください。
※単位(°や度など)をつけず、度数法で解答。

Chocolate

okapin 自動ジャッジ 難易度:
4月前

7

問題文

おかぴんはチョコレート入りの袋が3袋入った箱を持っていて、これから食べようとしています。
しかし、おかぴんは怠惰なので食べ終わった空の袋を捨てずに、再び箱の中に入れてしまいます。
箱の中から1袋ずつ取り出して、それがチョコレートの入った袋だったなら食べて箱の中に空の袋を戻し、それが空の袋だったなら食べずにそのまま箱の中に戻す、という試行を繰り返します。
チョコレートの入った袋を取り出す確率も空の袋を取り出す確率も同様に確からしいとするとき、箱の中の全てのチョコレートを食べ終えるまでの試行回数の期待値を求めてください。

解答形式

答えは$\frac{\fboxア}{\fboxイ}$(ただし既約分数)となります。$\fboxア\fboxイ$に入る数字をそれぞれ1,2行目に半角で入力してください。
※計算が大変なのでwolframalpha等で計算してください。

求面積問題3

Kinmokusei 自動ジャッジ 難易度:
3月前

7

問題文

図中の青い線分の長さはすべて10,赤で示した角はすべて等しいです。
このとき、緑色部分(凹四角形)の面積を求めてください。
解答形式に注意!

解答形式

$答えはA\sqrt{B}の形になります。(A,Bは自然数)$
$A+Bを解答してください。$
$<注意>$
$根号の中が最小となるようにしてください。$
$半角数字で解答してください。$
$例 : green area=10\sqrt{8}=20\sqrt{2}→A=20,B=2→22 と解答$

整数問題②

lucy 自動ジャッジ 難易度:
4月前

8

問題文

$p^2+q^2+r^2+s^2=t^4+1$を満たす素数$(p,q,r,s,t)$の組を全て求めよ。但し$p\leq q\leq r\leq s$とする。

解答形式

一行目に式を満たす組が何組あるか答えよ。また、そのような組の中で、$t$が最大であるものについて、$p,q,r,s,t$の値をそれぞれ2行目、3行目、4行目…へ記入せよ。いずれも数字のみ記入せよ。

(本当は解き方まで見たいですが、個別判定が大変なのでこの形式にします。できれば、なぜそうなるかもしっかり考えてください。)

求面積問題2

Kinmokusei 自動ジャッジ 難易度:
4月前

7

問題文

緑色の線分の長さは1です。
このとき、円の面積を求めてください。
図中の赤点はそれを含む線分の中点です。

解答形式

答えは(分数)×πの形になります。
分子を1行目に、分母を2行目に半角数字で入力してください。
ただし、既約分数の形で解答してください。
例: (10/3)π → 1行目に10、2行目に3

求面積問題4

Kinmokusei 自動ジャッジ 難易度:
2月前

4

問題文

半径比が1:2の同心円と直角三角形です。
赤い線分の長さが12のとき、緑の三角形の面積を求めてください。

解答形式

半角数字で解答してください。

求面積問題8

Kinmokusei 自動ジャッジ 難易度:
59日前

6

問題文

△ABCと点Pをとり、△ABP, △BCP, △CAPの重心をそれぞれ$G_1, G_2, G_3$とします。青で示した3つの三角形の面積の和が10のとき、$△G_1G_2G_3$(赤い三角形)の面積を求めてください。

解答形式

半角数字で解答してください。

求長問題5

Kinmokusei 自動ジャッジ 難易度:
51日前

5

問題文

※解答形式に注意!

図のように配置された3つの正三角形があります。青い線分の長さを求めてください。
ただし、赤、紫、緑の線分の長さはそれぞれ1,2,3で、隣り合う正三角形の間の角は30°です。

解答形式

答えは自然数$A,B$を用いて$A\sqrt{B}$の形に表せます。$A+B$を解答してください。
ただし、根号の中はできるだけ小さい自然数にしてください。

Sandwich

halphy 自動ジャッジ 難易度:
4月前

7

問題文

ピザが1枚ずつ乗った $N\;(\geq 2)$ 枚の皿が横一列に並んでいます.ピザにはがあり,表には具がのっていて,裏にはのっていません.はじめ,すべての皿のピザは表が上になっています.これらのピザに対して,次の操作Xを考えます.

操作X:

  1. 隣り合う2枚の皿に着目し,左側の皿に乗っているピザをひっくり返し,右側の皿の一番上に重ねる.ピザが複数枚乗っている場合は,ピザを重ねたまままるごとひっくり返す.
  2. 左側の皿を取り除き,皿どうしのすき間を詰める.

この操作Xを$\;N-1\;$回繰り返すと,1枚の皿にピザの塔ができます.操作Xの $N-1$ 回の繰り返しをピザの調理ということにします.ピザの塔を構成するピザを,上から順に$\;P_i\; (i=1,\cdots, N)\;$とし,$P_i$ が表を上に向けているとき「表」,裏を上に向けているとき「裏」と書くことにすると,ピザの塔は「裏裏裏表」のように表すことができます.

$N=6$とします.「裏裏裏裏表表」というピザの塔ができるような調理は何通りあるか答えなさい.

解答形式

半角数字で入力してください.

Thirteen Ones

halphy 自動ジャッジ 難易度:
4月前

9

問題文

$n\geq 2$ を自然数とする。$2$ 進数表記で
\begin{equation}
N=\underbrace{11\cdots 11}_n \underbrace{00\cdots 00} _ {n-1} {} _ {(2)}
\end{equation}と表される自然数 $N$ を考える。$n=13$ のとき,$N$ の正の約数の総和を求めなさい。

解答形式

$2$ 進数で答えなさい。

求角問題2

Kinmokusei 自動ジャッジ 難易度:
4月前

7

問題文

半円2つが図のように配置されています。
赤い線分と青い線分は長さの比が1:2です。
このとき、Xの角度を求めてください。

解答形式

半角数字で入力してください。
「度」や「°」は付けないでください。
例:X=57° → 57