[B] Triangles 1

halphy 自動ジャッジ 難易度: 数学 > 高校数学
2020年11月6日18:00 正解数: 10 / 解答数: 12 (正答率: 83.3%) ギブアップ不可
この問題はコンテスト「KOH Mathematical Contest #4」の問題です。

全 12 件

回答日時 問題 解答者 結果
2021年1月7日1:09 [B] Triangles 1 Benzenehat
正解
2021年1月7日1:09 [B] Triangles 1 Benzenehat
不正解 (1/2)
2020年12月23日17:58 [B] Triangles 1 minaduki_foo
正解
2020年12月6日19:07 [B] Triangles 1 tkg06269476
正解
2020年12月6日19:06 [B] Triangles 1 tkg06269476
不正解
2020年11月7日23:29 [B] Triangles 1 baba
正解
2020年11月7日10:38 [B] Triangles 1 Hnt8qLqtdfuHRiS
正解
2020年11月6日19:26 [B] Triangles 1 lemon_math_tea
正解
2020年11月6日18:33 [B] Triangles 1 okapin
正解
2020年11月6日18:31 [B] Triangles 1 okachan6666
正解
2020年11月6日18:13 [B] Triangles 1 mochimochi
正解
2020年11月6日18:02 [B] Triangles 1 nesya
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

[A] Don't Expand It!

masorata 自動ジャッジ 難易度:
11月前

14

問題文

$$
1+(2^1+1)(2^2+1)(2^4+1)(2^8+1)(2^{16}+1)(2^{32}+1)
$$

は、$2$ で最大何回割り切れるか。

解答形式

半角数字のみで答えよ。
たとえば $5555$ 回割り切れると答えるのであれば1行目に
5555
と入力せよ。

求面積問題10

Kinmokusei 自動ジャッジ 難易度:
12月前

4

問題文

図中の赤い線分の長さが10のとき、青で示した四角形の面積を求めてください。

解答形式

半角数字で解答してください。

B-どんだk〜〜〜〜!!

ofukufukufuku 自動ジャッジ 難易度:
15月前

16

問題文

$x$ についての2次方程式
$$
3x^2+(5k-4)x+4k = 0
$$が異なる2つの正の実数解 $\alpha,\beta\;(\alpha<\beta)$ を持ち、$\beta$ の小数部分が $\alpha$ である。このとき、$k$ の値を求めよ。

解答形式

解答は
$$
\frac{N-\sqrt{M}}{L}
$$と表わされる($N,M,L$ は自然数)。分数や平方根は最も簡単な形にしてある。解答欄には $N, M, L$ の値をそれぞれ 1, 2, 3 行目に半角数字で入力せよ。

求角問題5

Kinmokusei 自動ジャッジ 難易度:
13月前

5

問題文

図のように正六角形・扇形・その接線があります。Xで示した角の大きさを求めてください。

解答形式

0以上360未満の半角数字で解答してください。
※単位(°や度など)をつけず、度数法で解答。

円周率 3

hinu 自動ジャッジ 難易度:
16月前

12

問題文

$\pi$ と $\dfrac{355}{113}$ はどちらが大きいか。ただし必要があれば積分

$$
\int_0^1\frac{x^8(1-x)^8(25+816x^2)}{3164(1+x^2)}dx
$$

を計算せよ。

解答形式

piまたは 355/113 で解答してください。

[B]ネットワークの情報伝達

kaicho 自動ジャッジ 難易度:
13月前

9

問題文

次のようなネットワークを考える.
・情報として「0」または「1」の状態を各ノードは保持することができる.
・各ノードは他のノードに対して一方的に情報を伝達する.
・情報の伝達の際には,ある確率pで正しく状態を伝達するが,1-pの確率で状態が反転して伝達される.ここで,このpは枝によって値が異なることに注意する.
・2つのノードから情報が伝達される場合には,両方の情報を受け取った上で,保持する状態を決定する.このとき,2本のノードから受け取った情報が一致する場合には一致した状態を保持し,異なる情報を受け取った場合には1/2の確率で「0」を保持することにする(1/2の確率で「1」を保持することにする).
以下の図のネットワークにおいて始点の情報を終点まで伝達することを考え,始点と終点の状態が一致する確率xを求める.
ただし,矢印(枝)はノード間の情報伝達の方向を表し,枝の上に書かれている文字は正しく伝達される確率(上の説明のp)を表すものとする.

① a=2/3,b=3/4の場合のxを計算せよ.
② a=11/111,b=1/2の場合のxを計算せよ.
③ a=2/3,b=3/4の場合を考える.このネットワークはxy平面上の$3\times3$のサイズの格子点において,x軸正方向とy軸正方向に正しく情報が伝達される確率をそれぞれa,b,始点を原点,終点を点(2,2)としたものとみなせる.このとき,$n\times n$のサイズに拡張された(終点を(n,n)とする)ネットワークを考えると,$n\to \infty$とした時に,始点と終点の状態が一致する確率の収束値を求めよ.

解答形式

「分子/分母」(半角英数字)として既約分数を表せ.例)11/92
1行目に①,2行目に②,3行目に③を解答すること.

hinu積分01

hinu 自動ジャッジ 難易度:
16月前

9

問題

定積分

$$
\int_0^{\pi/2}\dfrac{\cos{x}-x}{1+\sin{x}}dx
$$

を計算せよ。

回答形式

半角数字で答えよ。無理数や記号等を用いる場合はTeX形式で入力せよ。

[E] modじゃんけん

hinu 自動ジャッジ 難易度:
14月前

10

問題文

$n\;(\geq 2)$ を自然数とするとき,以下の試行を行うことを考える。


試行

  • $n$ 人が $0,1,2$ のいずれかひとつの数を無作為に選ぶ。
  • 人 $i\; (i=1,2,\cdots, n)$ が選んだ数を $a_i$ とする。各人 $i$ に対して,
    $$
    a_i\equiv\sum_{j=1}^n a_j\; ({\rm mod} \; 3)
    $$ならば人 $i$ は生存し,そうでないなら脱落する。この試行をmodじゃんけんと呼ぶことにする。

$n$ 人がmodじゃんけんを $1$ 回行い,全員が生存するか全員が脱落するとき,modじゃんけんの結果はあいこになると定義する。

$n$ 人がmodじゃんけんを $1$ 回行ってあいこになる確率を $p_n$ とするとき

$$
p_2=\frac{\fbox{ア}}{\fbox{イ}},\; p_3=\frac{\fbox{ウ}}{\fbox{エ}},\; p_4=\frac{\fbox{オ}}{\fbox{カキ}}
$$

である。$n$ を $\fbox{ク}$ で割った余りが $\fbox{ケ}$ であるとき

$$
p_n=\frac{\fbox{コ}^{n}+\fbox{サ}}{\fbox{シ}^n}
$$

であり,そうでないときには

$$
p_n=\frac{\fbox{コ}^{n}+\fbox{ス}}{\fbox{シ}^n}
$$

である。また,

$$
\lim_{n\to\infty} p_n=\fbox{セ}
$$

が成り立つ。

解答形式

空欄 $\fbox{ア}$ 〜 $\fbox{セ}$ には,半角数字 0 - 9 または記号 - のいずれかが当てはまります。$\fbox{ア}$ 〜 $\fbox{セ}$ に当てはまるものを改行区切りで入力してください。分数はこれ以上約分できない形で解答してください。

整数問題①

lucy 自動ジャッジ 難易度:
16月前

14

問題文

$x!+2=y^4+5y$を満たす自然数$(x,y)$の組をすべて求めよ。

解答形式

以下の文章に入る$a,b,c$の値を入力せよ。1行目に$a$を、2行目に$b$を、3行目に$c$を入力すること。

条件を満たす自然数の組は$a$組存在する。その組の中で、$x$が最大となるような組は$(x,y)=(b,c)$である。

12月前

31

問題文

$7^{7^7}$ を $777$ で割ったあまりを求めよ。

(注:$7^{7^7}$ は「 $7$ の「 $7$ の $7$ 乗」乗」を表すものとする。)

解答形式

$0$ 以上 $776$ 以下の整数を、半角数字で1行目に入力せよ。

求長問題4

Kinmokusei 自動ジャッジ 難易度:
14月前

3

問題文

正七角形2つが図のように配置されています。
赤色の線分の長さが7のとき、青色の線分の長さを求めてください。

解答形式

半角数字で解答してください。

求面積問題6

Kinmokusei 自動ジャッジ 難易度:
14月前

3

問題文

図中、同じ印のついている辺・角同士は等しいです。
緑の凹四角形の面積が10のとき、青の三角形の面積を求めてください。

解答形式

半角数字で解答してください。