[B] Triangles 1

halphy 自動ジャッジ 難易度: 数学 > 高校数学
2020年11月6日18:00 正解数: 14 / 解答数: 16 (正答率: 87.5%) ギブアップ不可
この問題はコンテスト「KOH Mathematical Contest #4」の問題です。

全 16 件

回答日時 問題 解答者 結果
2024年2月28日14:36 [B] Triangles 1 Prime-Quest
正解
2024年1月2日16:57 [B] Triangles 1 nmoon
正解
2023年11月14日19:00 [B] Triangles 1 naoperc
正解
2021年10月27日16:40 [B] Triangles 1 tima_C
正解
2021年1月7日1:09 [B] Triangles 1 Benzenehat
正解
2021年1月7日1:09 [B] Triangles 1 Benzenehat
不正解 (1/2)
2020年12月23日17:58 [B] Triangles 1 minaduki_foo
正解
2020年12月6日19:07 [B] Triangles 1 tkg06269476
正解
2020年12月6日19:06 [B] Triangles 1 tkg06269476
不正解
2020年11月7日23:29 [B] Triangles 1 baba
正解
2020年11月7日10:38 [B] Triangles 1 Hnt8qLqtdfuHRiS
正解
2020年11月6日19:26 [B] Triangles 1 lemon_math_tea
正解
2020年11月6日18:33 [B] Triangles 1 okapin
正解
2020年11月6日18:31 [B] Triangles 1 okachan6666
正解
2020年11月6日18:13 [B] Triangles 1 mochimochi
正解
2020年11月6日18:02 [B] Triangles 1 nesya
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

求面積問題10

Kinmokusei 自動ジャッジ 難易度:
3年前

7

問題文

図中の赤い線分の長さが10のとき、青で示した四角形の面積を求めてください。

解答形式

半角数字で解答してください。

求長問題4

Kinmokusei 自動ジャッジ 難易度:
4年前

8

問題文

正七角形2つが図のように配置されています。
赤色の線分の長さが7のとき、青色の線分の長さを求めてください。

解答形式

半角数字で解答してください。

B-どんだk〜〜〜〜!!

ofukufukufuku 自動ジャッジ 難易度:
4年前

21

問題文

$x$ についての2次方程式
$$
3x^2+(5k-4)x+4k = 0
$$が異なる2つの正の実数解 $\alpha,\beta\;(\alpha<\beta)$ を持ち、$\beta$ の小数部分が $\alpha$ である。このとき、$k$ の値を求めよ。

解答形式

解答は
$$
\frac{N-\sqrt{M}}{L}
$$と表わされる($N,M,L$ は自然数)。分数や平方根は最も簡単な形にしてある。解答欄には $N, M, L$ の値をそれぞれ 1, 2, 3 行目に半角数字で入力せよ。

求面積問題8

Kinmokusei 自動ジャッジ 難易度:
4年前

13

問題文

△ABCと点Pをとり、△ABP, △BCP, △CAPの重心をそれぞれ$G_1, G_2, G_3$とします。青で示した3つの三角形の面積の和が10のとき、$△G_1G_2G_3$(赤い三角形)の面積を求めてください。

解答形式

半角数字で解答してください。

求値問題

Kinmokusei 自動ジャッジ 難易度:
3年前

6

問題文

三角形の3つの内角の大きさを$A,B,C$とします。このとき、次の式の最小値を求めてください。
$$
\frac{1-\cos A}{\cos B+\cos C}+\frac{1-\cos B}{\cos C+\cos A}+\frac{1-\cos C}{\cos A+\cos B}
$$

解答形式

最小値は$\frac {[ア]}{[イ]}$となります。$[ア]+[イ]$を解答してください。
ただし、$[ア],[イ]$にはそれぞれ自然数が入り、その最大公約数は$1$とします。

[A] Don't Expand It!

masorata 自動ジャッジ 難易度:
3年前

41

問題文

$$
1+(2^1+1)(2^2+1)(2^4+1)(2^8+1)(2^{16}+1)(2^{32}+1)
$$

は、$2$ で最大何回割り切れるか。

解答形式

半角数字のみで答えよ。
たとえば $5555$ 回割り切れると答えるのであれば1行目に
5555
と入力せよ。

整数問題(倍数)

zyogamaya 自動ジャッジ 難易度:
3年前

16

問題文

$f(x)=x^3+7x+6$の値が63の倍数になるような2桁の自然数$x$をすべて求めよ。

解答形式

解1つごとに改行して上から小さい順に半角数字で入力してください。$x=$は書かなくて良いです。

求面積問題14

Kinmokusei 自動ジャッジ 難易度:
3年前

13

問題文

周の長さが30である長方形ABCDがあります。辺CD上に∠APB=90°となるような点Pをとれるとき、長方形ABCDの面積の最大値を求めてください。

解答形式

半角数字で解答してください。

整数問題①

lucy 自動ジャッジ 難易度:
4年前

21

問題文

$x!+2=y^4+5y$を満たす自然数$(x,y)$の組をすべて求めよ。

解答形式

以下の文章に入る$a,b,c$の値を入力せよ。1行目に$a$を、2行目に$b$を、3行目に$c$を入力すること。

条件を満たす自然数の組は$a$組存在する。その組の中で、$x$が最大となるような組は$(x,y)=(b,c)$である。

3年前

27

問題文

(1)$\displaystyle \tan\theta=\frac{1}{4}$ のとき、$\displaystyle \tan2\theta=\frac{\fbox{ア}}{\fbox{イウ}}$ である。

(2)連立方程式

$$
\begin{cases}
x_1=x_2(2+x_1x_2) \\
x_2=x_3(2+x_2x_3) \\
x_3=x_4(2+x_3x_4) \\
x_4=x_1(2+x_4x_1)
\end{cases}
$$

を満たす実数 $(x_1,x_2,x_3,x_4)$ の組は全部で $\fbox{エオ}$ 個あり、そのうち $\tan20^\circ < x_1 < \tan80^\circ$ を満たすような組は $\fbox{カ}$ 個ある。

解答形式

ア〜カには、0から9までの数字が入る。
(1)の答えとして、文字列「アイウ」を半角で1行目に入力せよ。
(2)の答えとして、文字列「エオカ」を半角で2行目に入力せよ。

求長問題3

Kinmokusei 自動ジャッジ 難易度:
4年前

8

問題文

2つの正六角形が図のように配置されています。
赤い線分の長さが10のとき、青い線分の長さを求めてください。
ただし、図中"center"で示した点は各正六角形の外心です。

解答形式

半角数字で解答してください。

求面積問題6

Kinmokusei 自動ジャッジ 難易度:
4年前

9

問題文

図中、同じ印のついている辺・角同士は等しいです。
緑の凹四角形の面積が10のとき、青の三角形の面積を求めてください。

解答形式

半角数字で解答してください。