数学の問題一覧

カテゴリ
以上
以下

sulippa

公開日時: 2025年5月14日0:04 / ジャンル: 数学 / カテゴリ: / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

$n$ を $2$ 以上の整数、$k$ を正の整数する。
$m$ の階乗を $m!$ とし、$m!$ を $n$ 進法で表したとき、末尾に連続して並ぶ $0$ の個数を $Z_n(m!)$ とする。
$Z_n(m!) = k$ を満たす最小の正の整数 $m$ を $M(n, k)$ とする。(そのような $m$ が存在しない場合、$M(n, k) = \infty$ とする。)
問:
$p$ を $5$ 以上の素数とする。
$A_p = M(p, p-1)$ と定義する。
このとき、
$$M(A_p, k_0) = p^3 - p^2$$
を満たす正の整数 $k_0$ が一意に存在するような、最小の素数 $p$ を求めよ。
また、対応する $k_0$ の値を答えよ。

解答形式

$p,k_0$をこの順に半角1スペースおきに書いてください。

skimer

公開日時: 2025年5月13日22:38 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 採点者ジャッジ

整数 高校数学 素数 京大

問題文

$n\;を自然数とする$
$n\;が15の倍数でないとき、n^{4}+14\; は素数でないことを示せ$

解答形式

記述形式でお願いします
入力がめんどくさい方は、紙にでも書いて、twitterのDMに送ってください

sulippa

公開日時: 2025年5月13日18:24 / ジャンル: 数学 / カテゴリ: / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

△ABCで、内接円の半径を$r$とする。
$tanA=1/k,a=4k,r=k$
のとき、△ABCの面積の最小値を求めよ。

解答形式

半角数字の既約分数で1行目に分子、2行目に分母を書いてください、整数の場合も分母を1としてください。

MrKOTAKE

公開日時: 2025年5月13日13:49 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

三角形 $ABC$ の線分 $BC$ の中点を $M$ とし,線分 $AB$ 上に点 $P$ をおくと $AP=2,AM=5,CP=4, \angle ACP= \angle BPM$ であったので,線分 $BC$ の長さの $2$ 乗を解答せよ.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

MrKOTAKE

公開日時: 2025年5月13日13:40 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

三角形 $ABC$ があり内部に点 $D$ をとり,直線 $AD$ と $BC$ の交点を $E$ とすると $\angle ABD=\angle BCD,AD=DE=3,BE=2,CE=9$ であった.このとき $AC$ の長さの $2$ 乗を解答せよ.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

MARTH

公開日時: 2025年5月13日0:17 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


$1$ 以上 $461$ 以下の整数からなる数列 $(a_1,a_2,\cdots,a_N)$ は以下を満たします.

  • $a_1=309,a_N=461$.
  • $a_n\neq 461\quad (n=2,3,\dots,N-1)$
  • $n=2,3,\dots,N$ について, $(a_1+a_{n-1})a_n \equiv (1+a_1a_{n-1})\pmod{461}$

このとき, $N$ の値は一意に定まるので, $N$ の値を求めてください.
ただし, $461$ は素数であり, $2^n\equiv 1\pmod{461}$ をみたす正整数 $n$ の最小値は, $460$ であり, $3a_1\equiv 5\pmod{461}$ です.

Ryomanic

公開日時: 2025年5月12日18:27 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 採点者ジャッジ


問題文

数列{a_n}について、
$$a_1=1$$,$$a_{n+1}=(n+1)a_n$$ と定めます。
n≧4の時、
$$\frac{a_n}{a_{n-1}a_{n-2}}$$
が整数となるような整数nを全て求めてください。(更新5月13日12時50分)

解答形式

解が有限個となるので全ての解と、それ以外に解が存在しないことの証明を、簡単で構わないのでお願いします。

sulippa

公開日時: 2025年5月11日17:38 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 採点者ジャッジ


問題文

素数 $p$ と正の整数 $n$ が、以下の等式を満たすとします。
$$\frac{n^2+np+p^2}{n+p} = 2p-1$$
このような組 $(n,p)$ を全て求めてください。

解答形式

解が有限個であるとされた場合は、全ての解と、それ以外に解が存在しないことの証明を、簡単で構わないのでお願いします。無限個とされた場合は証明いらないので、何らかの形で解を表してください。証明に完全性がないと見なした場合は、採点機能がない都合上、99点をあげたいところも不正解とさせていただきます

sulippa

公開日時: 2025年5月11日11:47 / ジャンル: 数学 / カテゴリ: / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

互いに素な整数の辺 $a,b,l$(斜辺 $l$)を持つ直角三角形を考える。内接円の半径を $r$、周長を $L$、面積を $S$ とする。
$L^2=kS$ ($k$ は正の整数) を満たすとき、
全てのkの値を求めよ。

解答形式

半角1スペースおきに小さい順に並べてください

kinonon

公開日時: 2025年5月11日0:51 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

$n=2\times 577$とする. このとき以下の値を素数$577$で割った余りを求めよ.
$$\sum _{k=0}^{n} {}_{n+k} \mathrm{C}_{n-k}\cdot {}_{2k} \mathrm{C}_{k}$$

解答形式

答えは正整数となるので、その値を解答してください

Tarotaro

公開日時: 2025年5月11日0:11 / ジャンル: 数学 / カテゴリ: 大学数学 / 難易度: / ジャッジ形式: 採点者ジャッジ


$$n∈𝑁がn=\prod_{i=1}^{∞}p_i^{v_{p_i}(n)}(p∈𝑃)である時、$$$$D(n)=n\sum_{j=1}^{∞}\frac{v_{p_j}(n)}{p_j}と定義する。$$$$この時D(π)を求めよ。ただしπは円周率。$$

AS

公開日時: 2025年5月10日23:22 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


四面体 $\mathrm{ABCD}$ は
$\ \mathrm{AB}=\mathrm{BC}=\mathrm{CA}=6,\ \mathrm{AD}=\mathrm{BD}=4,\ \mathrm{CD}=5$
を満たす.このとき,四面体 $\mathrm{ABCD}$ の体積 $V$ と,外接球の半径 $R$ を求めよ.

解答においては,$1$ 行目に $V^2$ を,$2$ 行目に $R^2$ を記して答えよ.
ただし,整数でない有理数は既約分数(分母は自然数,分子は整数で,互いに素)で表し,$\displaystyle\frac{5}{13}$ なら
5/13
のように記入せよ.