公開日時: 2025年8月1日10:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
円に内接する四角形 $ABCD$ があり,対角線の交点を $E$ とすると,
$$BE=CD,\quad AB=16,\quad BD=35,\quad CE=25$$
が成立しました.このとき線分 $AC$ の長さを解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
公開日時: 2025年8月1日10:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
$\angle A$ が鈍角である内接四角形 $ABCD$ があり,三角形 $ABD$ の内接円と $AB,AD$ の接点をそれぞれ $P,Q$ とし,三角形 $BCD$ の内接円と $BC,CD$ の接点をそれぞれ $R,S$ とします.三角形 $ABD$ における $\angle A$ 内の傍接円と直線 $AB$ の接点を $T$ とすると,以下が成立しました.
$$BT=BR,\quad PR=6,\quad QS=7,\quad BD=9$$
このとき三角形 $BPR$ の面積の $2$ 乗を解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
公開日時: 2025年8月1日10:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
$AB<AC$ を満たす鋭角三角形 $ABC$ があり,外接円 $\Omega$ の中心を $O$, $\Omega$ の $A$ を含まない方の弧 $BC$ の中点を $M$ とします.$\Omega$ の点 $B,C$ それぞれにおける接線の交点を $D$ とし,線分 $AD$ と $\Omega$ の交点のうち $A$でない方を $P$ とし,点 $P$ を通り直線 $BC$ に垂直な直線と線分 $AM$ の交点を $Q$ とすると以下が成立しました.
$$AQ=8,\quad OQ=3,\quad \angle PMO=\angle QOM$$
このとき線分 $BM$ の長さの $2$ 乗は互いに素な正の整数 $a,b$ を用いて $\displaystyle \frac{a}{b}$と表されるので $a+b$ を解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
公開日時: 2025年8月1日10:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
$\angle A$ が鈍角の二等辺三角形 $ABC$ があり,外接円を $\Omega$ とします.$\Omega$ の点 $C$ を含まない弧 $AB$ 上に点 $P$ をとり,直線 $BP$ と点 $C$ における $\Omega$ の接線の交点を $Q$ とし,直線 $AP$ と線分 $CQ$ の交点を $R$ とすると以下が成立しました.
$$BC=40,\quad BP=14,\quad QR=9$$
このとき線分 $AP$ の長さの $2$ 乗を解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください
公開日時: 2025年7月29日22:46 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
$202\times5$ のマス目があり,それぞれのマスに上下左右のいずれかの矢印が書かれており,以下の $2$ つを満たしました.
任意のマスについて,そのマスに書かれている矢印の方向に動くということを繰り返すことで元のマスに戻ることができる.
互いに向かい合っているような矢印は存在しない.
$3$ 列目に書かれた $202$ 個の矢印の中に,左向きの矢印は存在しない.
条件を満たすように矢印を書き込む方法は $N$ 通りあります.$N$ を$2$ つの素数の積 $197\times199$ で割った余りを求めてください.
半角数字で解答してください.
公開日時: 2025年7月29日22:46 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
三角形 $ABC$ において,$\angle{A}, \angle{B}, \angle{C}$ の角の二等分線と辺 $BC, CA, AB$ との交点を $D, E, F$ ,直線 $CF$ と $DE$ の交点を $X$ ,三角形 $ABC$ の外接円と直線 $AD, AX$ の交点を $M, N$ とすると,以下が成り立ちました.
$$
MN=NC, BD=4, DC=6
$$このとき,三角形 $ABC$ の面積を求めてください.ただし,答えは 正整数 $a, b, c$ ( $a$ と$b$ は互いに素,$c$ は平方因子を持たない)を用いて $\dfrac{b\sqrt{c}}{a}$ と表されるので $a+b+c$ の値を解答してください.
半角数字で解答してください.
公開日時: 2025年7月29日22:46 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
$1$ 以上 $5$ 以下の整数しか項に持たない全 $2025$ 項の数列があり,任意の連続する $3$ 項において以下を満たします.
例えば,$1, 1, 1, 1, \ldots$ や $1, 3, 5, 4, \ldots$ は条件を満たします.このような数列は $N$ 個あります.$N$ を素数 $677$ で割った余りを求めてください.
半角数字で解答してください.
公開日時: 2025年7月27日13:40 / ジャンル: 数学 / カテゴリ: / 難易度: / ジャッジ形式: 採点者ジャッジ
$$\sum_{i=1}^{n} x_i^n = y^n$$
$x_i$がすべて互いに素でnが6以上のときこの式を満たす自然数は高々有限個しか存在しない。
この命題をABC予想を真として、真か偽を証明しなさい。
公開日時: 2025年7月27日11:19 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 採点者ジャッジ
$D_n$ を $1$ から $n$ までの整数の順列 $(a_1, a_2, \cdots ,a_n)$ のうち
$$a_k \neq k \quad (k=1, 2, \cdots ,n)$$ を満たすものの個数とする. 例えば, $D_2=1, D_3=2, D_4=9$ である.
このとき,任意の素数 $p$ に対して$$D_{p-1} \equiv \sum_{k=0}^{p-1}{k! } \pmod{p}$$ となることを示せ.
方針だけでも採点します
公開日時: 2025年7月22日9:17 / ジャンル: 数学 / カテゴリ: 算数 / 難易度: / ジャッジ形式: ジャッジなし
ある数は2の倍数であり、1を引くと3の倍数である。この数を、小さい順で10個答えよ
数字を10個