数学の問題一覧

カテゴリ
以上
以下

y

公開日時: 2024年7月5日5:14 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


$$
\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{n^{-64}}}}}}}
$$

y

公開日時: 2024年7月5日3:31 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


$$
\int_{0}^{sin30°}log_327^mdm=\sqrt{\sqrt16}n\\のnについての値を求めてください。
$$

y

公開日時: 2024年7月5日3:17 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


$$
|i^{2024}|
$$

sta_kun

公開日時: 2024年7月2日23:22 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

凸四角形 $ABCD$ において,
$$AB=BD=7 ,BC=5,CD=4, 2∠ACB+∠ACD=180°$$

が成り立ちました.このとき,線分 $AD$ の長さは互いに素な自然数 $a,b$ を用いて $\dfrac{a}{b}$​ と表せるので $a+b$ を解答してください.

解答形式

半角数字で解答してください.
不備等あれば教えて下さい。

y

公開日時: 2024年7月2日14:35 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


$$
\int_0^{cos60°}log_2\frac{8^m}{4^n}d(m,n)=l\\についてlで表してください。
$$

Nyarutann

公開日時: 2024年6月28日16:55 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

五角形 $ABCDE$ は $\angle{A}=90°$ で,四角形 $BCDE$ は $1$ 辺の長さが $8$ の正方形になっています.$AC$ と $BD$ の交点を $P$ とし,$AP=PQ$ となる点 $Q$ を辺 $DE$ 上に取りました.$\angle{ACQ}=45°$ であるとき,$PQ$ の長さの $2$ 乗を求めてください。

解答形式

非負整数を半角で入力してください。

Lamenta

公開日時: 2024年6月27日19:36 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ

組合せ

問題文

縦$2$マス、横$7$マスの$14$マスそれぞれに$1$〜$7$の整数のいずれかが$1$つ書かれています。以下の条件を満たす数字の書き方は何通りあるか答えてください。ただし、$N_{a,b}$で上から$a$マス目、左から$b$マス目のマスに書かれた数を表します。

・$1≦i≦7$の任意の整数$i$において、
 $N_{1,i}≡N_{2,i} (mod\:3)$ かつ
 $N_{1,i}≢N_{2,i} (mod\:2)$
・$1≦j≦2$、$1≦k≦6$の任意の整数$j,k$において、
 $N_{j,k}≢N_{j,k+1} (mod\:3)$ かつ
 $N_{j,k}≢N_{j,k+1} (mod\:2)$

解答形式

半角数字で入力してください。

nanohana

公開日時: 2024年6月27日18:23 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 採点者ジャッジ

三平方の定理 階乗 三角形

問題文

三辺の長さがa!、b!、c!(a,b,cは自然数)となる直角三角形は存在するか。

解答形式

存在するならば組(a,b,c)を1組入力してください。存在しないならば、存在しないことを証明してください。(簡単にでいいです)

nanohana

公開日時: 2024年6月27日18:22 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 採点者ジャッジ

整数 素数

問題文

$$p、p^2、p^3、p^4$$が10進数表記ですべていい数字となる自然数pは存在するか。
ただし、いい数字とはどの桁も素数であるような自然数のことである。例えば、252、7352のような自然数のことである。

解答形式

存在するならばそのような自然数pを入力してください。存在しないならば、存在しないことを証明してください。(簡単にでいいです。)

y

公開日時: 2024年6月27日13:13 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


$$
\int_{0}^{log_28}log_3\frac{27^m}{9^n}d(m,n)
$$

y

公開日時: 2024年6月27日12:50 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


$$
log_2\frac{4^n}{8^m}=4^{m-n}に関して\\mをnで表してください。
$$

tsukemono

公開日時: 2024年6月25日23:28 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 採点者ジャッジ


問題文

外接円の半径が$2$である鋭角三角形$ABC$を考える。
辺$AB,BC,CA$をそれぞれ$c,a,b$とし、
$cos ∠ABC=c$、$b=3$、$a³-a²+a-1=0$
を満たしている。これについて、以下の問に答えよ。ただし、$a,c$はいずれも実数とする。

$(1)$ $a$ の値を求めよ。

$(2)$ $cos ∠ABC$を求めよ。

$(3)$ $△ABC$の面積$S$を求めよ。

解答形式

答えが分かるように入力してください。