数学の問題一覧

カテゴリ
以上
以下

002

1024 自動ジャッジ 難易度:
13月前

2

問題文

座標平面上の $|x|≦1$ かつ $|y|≦1$ を満たす領域を $D$ とする。また傾き $1$ の直線を $l$, $y=x^2$ のグラフを平行移動したグラフ $C$ の頂点を $P$ とする。$l$ を $D$ と共有点を持つように, $C$ を $P$ が $D$ 内に存在するように無作為にとるとき, $l$ と $C$ が交わる確率を求めよ。

解答形式

少数第4位を四捨五入して, 少数第3位までを,半角数字で解答してください。

001

1024 自動ジャッジ 難易度:
13月前

14

問題文

$nを2以上の整数とする。n!を,n^3-nで割った余りと,n^nで割った余りが等しくなるnを全て求めよ。$

解答形式

$半角数字でnの値が小さい順に一行ずつ解答してください。$
$(例)n=2,3,4となったとき$
2
3
4

無限級数1

tsx 自動ジャッジ 難易度:
13月前

1

問題文

級数
$$1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}-\frac{1}{7}-\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}-\frac{1}{15}-\frac{1}{16}+\cdots$$
の収束値を求めよ. ただし, この級数の第 $n$ 項の絶対値は $\dfrac{1}{n}$ であり, 各項の符号は $4$ 項ごとに交代する.

解答形式

収束値は $\fbox{A}\text{ - }\fbox{F}$ をいずれも自然数として最も簡単な形で $\displaystyle{\frac{\fbox{A}+\fbox{B}\sqrt{\fbox{C}}}{\fbox{D}}\pi+\frac{\log{\fbox{E}}}{\fbox{F}}}$
と 表されます. 文字列 $\fbox{A}\,\fbox{B}\,\fbox{C}\,\fbox{D}\,\fbox{E}\,\fbox{F}$ を解答してください.

積分2

tsx 自動ジャッジ 難易度:
13月前

10

問題文

定積分 $\displaystyle\int_0^1\sqrt[dx]{dx^{dx}+dx^{dx+1}}$ を計算せよ.

2023/03/21 訂正:

解答形式を変更しました. 解答に影響はありません.

解答形式

スペースを含めず, ASCII文字のみを用いて $\mathrm{\LaTeX}$ 形式で解答してください. $は必要ありません.

13月前

12

【補助線主体の図形問題 #090】
 間もなく迎える3月14日は円周率$\pi$の近似値$3.14$から「円周率の日」、転じて「数学の日」に指定されています。そんな「円周率の日」「数学の日」に先んじて円だらけの問題を用意しました。手慣れた方なら暗算で行けるかもしれません。今一時、円だらけの図形と戯れてみてください。

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

13月前

9

【補助線主体の図形問題 #089】
 今週の図形問題は円&等脚台形というありがちな素材でありながら、ちょいとひねって解きにくい問題となっています。方針によって計算量は大きく変わりますが、想定解ではちょっとしたメモ帳で収まる量です。補助線と共に試行錯誤を楽しんでもらえたら幸いです。

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

積分1

tsx 自動ジャッジ 難易度:
13月前

8

問題文

定積分 $\displaystyle\int_{-\pi}^{\pi}x\cos{x}\sin{dx}$ を計算せよ.

2023/03/21 訂正:

解答形式を変更しました. 解答に影響はありません.

解答形式

スペースを含めず, ASCII文字のみを用いて $\mathrm{\LaTeX}$ 形式で解答してください. $は必要ありません.

三角形と半円

tb_lb 自動ジャッジ 難易度:
13月前

7

【補助線主体の図形問題 #088】
 しばしば休んでしまいましたが、今週の図形問題をお送りします。今週は意味ありげな折れ線を登場させてみました。いろいろな関係を発見しながら、どうぞお楽しみください。

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

余擺々々...線

tsx 自動ジャッジ 難易度:
14月前

2

問題文

定点 $\mathrm{P_0}$, $\mathrm{P}$ があり, $\mathrm{P_0 P}=1$ を満たしている.
線分 $\mathrm{P_0 P}$ の中点を $\mathrm{P_1}$,
線分 $\mathrm{P_1 P}$ の中点を $\mathrm{P_2}$,
線分 $\mathrm{P_2 P}$ の中点を $\mathrm{P_3}$, ... というように, $n\in\mathbb{N}$ に対し, 点 $\mathrm{P_\mathit{n}}$ を 線分 $\mathrm{P_{\mathit{n}-1}\mathrm{P}}$ の中点として, 線分 $\mathrm{P_0 P}$ 上に無数の点をとる. いま, このようにしてできた全ての点が同時に出発して, 点 $\mathrm{P_\mathit{n}}$ が点 $\mathrm{P_{\mathit{n}-1}}$ を中心として円を描くように動くとき, $\displaystyle\lim_{n\to\infty}\mathrm{P_\mathit{n}}$ が描く曲線の長さを求めよ.
ただし, 線分 $\mathrm{P_0 P_1}$ が線分 $\mathrm{P_0 P}$ に対してなす角,
線分 $\mathrm{P_1 P_2}$ が線分 $\mathrm{P_0 P_1}$ に対してなす角,
線分 $\mathrm{P_2 P_3}$ が線分 $\mathrm{P_1 P_2}$ に対してなす角, ...
線分 $\mathrm{P_\mathit{n} P_{\mathit{n}+1}}$ が線分 $\mathrm{P_{\mathit{n}-1} P_\mathit{n}}$ に対してなす角の変化はすべて等しく, 一定の割合であるとする.

2023/02/22 訂正:

tima_C様のご指摘を受け、難易度を変更しました.

2023/03/21 訂正:

解答形式を変更しました. 解答に影響はありません.

解答形式

スペースを含めず, ASCII文字のみを用いて $\mathrm{\LaTeX}$ 形式で解答してください. $は必要ありません.

ただし, 文字や根号などの係数が分数の場合は
$$
\frac{3}{2}x\rightarrow\frac{3x}{2}
$$
のように, 文字を分子にまとめてください.

整数問題2/7

miq 自動ジャッジ 難易度:
14月前

7

問題文

$2^{p}+7^{q}=r^{p+q-r}$を満たす素数の組$(p,q,r)$をすべて求めよ.

解答形式

文字列$pqr$を,半角数字で解答してください.解が複数ある場合は,
(1) $p$の値が小さい順
(2) $p$の値が等しい組は,$q$の値が小さい順
(3) $p,q$の値がともに等しい組は,$r$の値が小さい順
に,1行に1つずつ書いてください.

追記

どなたか素数に限らない整数解を全て求めてくださるとありがたいです.

整数問題2/6

miq 自動ジャッジ 難易度:
14月前

14

問題文

$2^{n}+6n+1$が平方数となるような自然数$n$の値をすべて求めよ.

解答形式

半角数字で解答してください.解が複数ある場合は,小さいものから順に,1行に1つずつ書いてください.

14月前

19

【補助線主体の図形問題 #087】
 今週の図形問題は面積関係をテーマにしてみました。中点だらけということもあり、複雑な計算は不要です。自信のある方はぜひ暗算で処理してみてください。

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm^2$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm^2$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm^2$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。