公開日時: 2025年10月11日13:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
正整数列 $A_{n}$ を以下のように定義する
$$
1個の2 以上の正整数を要素に持ち,それらの総積が n に等しい
$$ この時 $A_{2^{100}}$ としてありうる数列すべてについて,その要素の
総和を $97$ で割った余りを答えてください。
ただし,並び替えて一致するものも別々として数える。
例えば $A_{8}$ としてありうるものは $\lbrace8\rbrace,\lbrace2,4\rbrace, \lbrace4,2\rbrace, \lbrace2,2,2\rbrace$ でありその要素の総和は $8+2+4+4+2+2+2+2=26$ である。
正整数で答えてください
公開日時: 2025年10月11日13:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
鋭角三角形$ABC$について,その垂心を$H$,外心を$O$,線分$AB$,$BC$,$CA$の中点をそれぞれ$L,M,N$とします.円$OMN$と直線$LN,LO,LM$の交点のうち,$N,O,M$でないほうをそれぞれ$P,Q,R$とすると以下が成立しました.
$$
AH=6,LN=4, PC\perp CR.
$$
この時,線分$OQ$の長さの二乗の値は互いに素な正の整数$a,b$を用いて$\frac ab$と表せるので$a+b$を回答してください.
公開日時: 2025年10月8日15:06 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 採点者ジャッジ
任意の自然数nにおいて、$A(n+1)=\frac{A(n)^2+A(n+2)^2}{A(n)+A(n+2)},A(n)>0$
が成り立つ数列{A(n)}をA(2),A(1)の値に
よって定める。
この数列はA(2)>A(1)>0を満たす
任意の(A(1),A(2))組に対して一意に定まる。
$$\lim_{n\to \infty}A(n)を求めよ。
$$(但し、数列{X(n)}において常にX(n)>X(n+1)>x
ならX(n)が収束することを用いて良い)
収束するならその値を、
振動するときは'振動する'と、
無限大に発散する時は∞と答えよ。
公開日時: 2025年10月6日10:57 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
xy平面上に固定された円板C:x^2+y^2=1と、
CにA(1,0)で固定された長さ2π、もう一方の端点をPとする糸がある。
始めにP=Aとなるように糸を時計回りでCに巻き付ける。
ここで、Cと合同な円板C'をAで外接させ、
C’上の接点とPを接着する。
C'がCに接しながら糸を弛ませずに反時計回りに
Cを一周する。
(但し、始めからしばらくはC'に糸は巻きつかない)
Pの軌跡の長さを求めよ。
Xπ+Y(X,Yは有理数)の形になるので
X+Yを最もシンプルな形で答えよ。
(但し、X,Yは正の数とは限らない)
不正解となった場合、Xπ+Yもしくは簡単な方針を質問欄に入れてくれると助かります
公開日時: 2025年10月5日21:18 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
ある三角形OABにおいて
OP=sOA、OQ=tOBとなるように
P,Qを半直線OA,OB上におく(0<s,t<1)
そして、点Rを次のように定める
・Rは四角形ABQPの内部に存在し、
|O-AB|:|O-PQ|=|R-AB|:|R-PQ|を満たす
(但し、|X-YZ|は点Xから直線YZへの距離とする)
このとき、s,tがs+t=1を満たしながら変動する。
Rの存在領域の面積を求めよ!!
〈(10D+E)√F−Gπ〉|△OAB|÷9√3と表せるので(D,E,F,Gは数字)、四桁の数DEFGを答えよ
公開日時: 2025年10月3日12:30 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
横一列に並んだ $14$ 個のオセロの石があります.そして,以下の操作を何度か行い,黒面を向いた石の個数をできるだけ少なくします.
全ての操作の終了後に黒面を向く石の個数を スコア とします.最初の石の配色は $2^{14}$ 通りありますが,これら全ての場合においてスコアの総和を求めてください.
但し,オセロの石は,片方が黒面で,もう片方が白面であるとする.
正整数で答えてください.
公開日時: 2025年10月3日12:30 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
$AB \lt AC$ を満たす鋭角三角形 $ABC$ の垂心を $H$,とする.直線 $BH, CH$ と三角形 $ABC$ の外接円との交点をそれぞれ $E (\not = B) , F (\not = C)$ とし,辺 $AB , AC$ と 線分 $EF$ との交点をそれぞれ $P , Q$ とする.直線 $AC$ に関して $P$ と対称な点を $R$,直線 $AB$ に関して $Q$ と対称な点を $S$ とし,三角形 $RSH$ の外心を $O$ とすると,以下が成立した.
$$ AH = 3 , BC = 4 , AO = 1$$
このとき,$AB$ の長さを求めてください.
互いに素な正整数 $b , c$ および正整数 $a$ を用いて $\dfrac{\sqrt{a} - b}{c}$ と表されるので,$a + b + c$ を答えてください.