ある円周上に点をランダムに無限個打ち,打った順に $A_1,A_2,A_3,\cdots$ とします.また,以下のルールに従い点つなぎを行います.
引くことの出来る線分の本数の期待値を $E$,分散を $V$ としたとき $V=f(E)$ となる整数係数多項式 $f$ がただ $1$ つ存在するので,$|f(1685)|$ の値を解答してください.
半角数字で解答してください
$x,y$を非負整数とする。
$10x+31y=1031$
を満たす組$(x,y)$をすべて求めよ。
誤って第1問と第3問の答えを逆で設定していました。大変申し訳ございません。
組$(x,y)$について、$x+y$の総和を半角数字で入力してください。
$f^{1031}(x)=f(x)$を満たし、かつ$f(1031)=1031$である多項式関数$f(x)$をすべて求めよ。
ただし、$f^{1031}(x)=\underbrace{f(f(\cdots f}_{1031個}(x)\cdots))$とします。
簡単な証明もお願いします。