数学の問題一覧

カテゴリ
以上
以下

${}$ 2023年、あけましておめでとうございます。本年もよろしくお願いいたします。
 さて、新年数日は図形問題をお休みして、西暦である2023を織り込んだ数学やパズルの問題をお送りします。
 初日・2日目は虫食算です。虫食算というと確定マスから埋めていき、時には場合分けや仮置きを利用するのが定番の手法ですが、僕が作る虫食算は数学的手法(約数や倍数、偶奇性や剰余、不等式による絞り込み、などなど)を適宜用いることで面倒な場合分けや仮置きを軽減できるようにしています。とはいえ、解き方は自由です。お好きなようにパズルなひと時をお楽しみください。

解答形式

${}$ 解答は2行目を「被除数÷除数」の形で入力してください。
(例) $2023 \div 101 = 20$ 余り $3$ → $\color{blue}{2023 \text{÷} 101}$
 入力を一意に定めるための処置です。数字は半角で、「÷」の演算記号はTeX記法(\div)ではなく全角記号の「÷」でお願いします。

23月前

11

【補助線主体の図形問題 #084】
 2022年最後の図形問題です。今年ラストは補助線の威力を存分に味わえる問題を用意しました。存分に試行錯誤をお楽しみください。

お知らせ

2023年初頭は西暦を織り込んだ数学・パズルの問題をお送りします。1月1日夜から6~7日間お届けするつもりです(まだ作問中です)。どうぞお楽しみに!
※参考:今年年始にお届けした2022年問題
https://pororocca.com/problem/?tag=2022%E5%B9%B4%E5%95%8F%E9%A1%8C&sort_by=oldest

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

平行四辺形の面積

tb_lb 自動ジャッジ 難易度:
23月前

6

【補助線主体の図形問題 #083】
 今週の図形問題です。暗算では処しがたい計算が待ち受けていますので、ぜひ紙&ペンをお供に挑戦してみてください。

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm^2$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm^2$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm^2$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

345

hkd585 自動ジャッジ 難易度:
23月前

3

問題文


$AB=AC=3$ なる $\triangle ABC$ がある.辺 $BC$ の $C$ 側の延長上に,$AD=5$ なる点 $D$ をとる.$\triangle ABD$ の外接円において,$B$ を含まない弧 $AD$ 上に,$DE=4$ なる点 $E$ をとる.直線 $CE$ と $\triangle ABD$ の外接円との交点のうち,$E$ でないものを $F$ としたら,$EF=\dfrac{48}{\sqrt{91}}$ となった.このとき,
$$
BF=\dfrac{a}{b}
$$
である.ただし,$a,b$ は互いに素な自然数である.

$\boldsymbol{\underline{a^{2}+b^{2}}}$ の値を求めよ.

解答形式

半角数字で解答してください.


【補助線主体の図形問題 #082】
 今週の図形問題です。今回は解法の多そうな問題を用意してみました。補助線を頼りに思い思いの解法を楽しんでもらえたら嬉しいです。

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

23月前

7

問題文

図の条件の下で,線分 $AB$ の長さを求めてください.
※orthocenter:垂心,circumcenter:外心

解答形式

$AB^2$ の値は互いに素な正整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ の値を解答してください.


【補助線主体の図形問題 #081】
 今週の図形問題は求角問題にしてみました。おそらく僕も想定していなかった解法がいろいろあることでしょう。想定解は補助線がビシッと活躍します。どうぞ思い思いの解法をお楽しみください。

※2022年12月6日22時17分追記
問題文に誤りがあり、修正したものに差し替えました。ここにお詫びして訂正いたします。申し訳ございませんでした。
(誤)接線AB、AC → (正)接線PB、PC

解答形式

${\renewcommand\deg{{}^{\circ}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。角度は弧度法ではなく度数法で表すものとします。
(例) $12\deg$ → $\color{blue}{12.00}$  $\frac{360}{7}^{\circ}$ → $\color{blue}{51.43}$
 入力を一意に定めるための処置です。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

4重根号

tsx 自動ジャッジ 難易度:
23月前

7

問題文

以下の多重根号を簡略化せよ。

2022/12/09 訂正:

難易度やnaoperc様よりご指摘いただいた根号の指数の誤りなど複数箇所を訂正しました.

2023/02/11 訂正:

問題文, 解答形式の文章を他の問題と統一しました. 解答に影響はありません.

2023/03/21 訂正:

解答形式を変更しました. 解答に影響はありません.

解答形式

スペースを含めず, ASCII文字のみを用いて $\mathrm{\LaTeX}$ 形式で解答してください. $は必要ありません.

24月前

10

問題文

図の条件の下で,半円の直径 $x$ を求めてください.

解答形式

$x^2$ の値を半角数字で解答してください.

24月前

9

【補助線主体の図形問題 #080】
 今週も補助線の威力が感じられる図形問題を用意しました。若干面倒な計算が待っているので、紙&ペンがあると安心かもしれません。存分に補助線による試行錯誤をお楽しみください。

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

2年前

7

【補助線主体の図形問題 #079】
 先週今週と2週続けて内心と傍心をテーマにした問題をお送りしています。補助線次第では暗算可能です。挑戦をお待ちしております!

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

三角関数の計算⑵

hkd585 自動ジャッジ 難易度:
2年前

3

問題文

次の計算をせよ.

$$
\sum_{k=1}^{2023}\sec\dfrac{6k-5}{6069}\pi\quad
$$

ただし,$\sec\theta=\dfrac{1}{\cos\theta}$とする.

解答形式

解答は整数となります.そのまま半角で入力してください.