数学の問題一覧

カテゴリ
以上
以下

求面積問題5

Kinmokusei 自動ジャッジ 難易度:
3年前

7

問題文

正方形が2つ、図のように配置されています。赤い線分の長さが20のとき、緑で示した四角形の面積を求めてください。
ただし、図中の青点はそれぞれの正方形の対角線の交点です。

解答形式

半角数字で解答してください。

求面積問題4

Kinmokusei 自動ジャッジ 難易度:
3年前

8

問題文

半径比が1:2の同心円と直角三角形です。
赤い線分の長さが12のとき、緑の三角形の面積を求めてください。

解答形式

半角数字で解答してください。

求長問題2

Kinmokusei 自動ジャッジ 難易度:
3年前

9

問題文

直径10の半円中に、直径の和が10となる2つの半円を図のように配置します。点Aを大半円の弧上にとり、線分AB,ACと小半円の交点をD,Eとします。
$BD^2+DE^2+EC^2$が最小となるようにしたとき、その最小値を求めてください。

解答形式

半角数字で解答してください。

求角問題3

Kinmokusei 自動ジャッジ 難易度:
3年前

6

問題文

半円3つが図のように配置されています。∠Xと∠Yの差を求めてください。
※同じ色で示した線分は長さが等しいです。

解答形式

0~360までの整数を半角数字で解答してください。
「度」や「°」などの単位を付けないでください。
例: 30° → 30

Mapping to a Map

halphy 自動ジャッジ 難易度:
3年前

0

問題文

$\mathbb{R}^3$上の単位球面
$$
S^2=\{(x,y,z)\in \mathbb{R}^3\mid x^2+y^2+z^2=1\}
$$に対して,その開部分集合 $U=S^2\setminus \{(x,y,z)\in S^2 \mid x\geq 0, y=0\}$ を考える。また,$\mathbb{R}^2$ の部分集合を
$$
V=\{(\theta, \varphi)\in\mathbb{R}^2\mid -\pi/2 < \theta < \pi/2, \;0<\varphi <2\pi\}
$$とおく。

写像 $f:V\to U, g: V\to \mathbb{R}^2$ を次のように定める。
\begin{align}
f(\theta, \varphi)&=(\cos\theta\cos\varphi, \cos\theta\sin\varphi, \sin\theta)\\
g(\theta, \varphi)&=(\varphi \cos\alpha, \sin\alpha)
\end{align}ただし,$\alpha$ は,関係式
$$
\sin 2\alpha+2\alpha=\pi\sin\theta
$$の唯一の解である。$g$ が単射であることは証明なしに用いてよい。

(1) $(\xi, \eta)=g(\theta, \varphi)$ とし,行列
$$
J(\theta, \varphi)=\begin{pmatrix} \cfrac{\partial\xi(\theta, \varphi)}{\partial \theta} & \cfrac{\partial\eta(\theta, \varphi)}{\partial \theta} \\ \cfrac{\partial\xi(\theta, \varphi)}{\partial \varphi} & \cfrac{\partial\eta(\theta, \varphi)}{\partial \varphi} \end{pmatrix}
$$を考える。このとき
$$
|{\rm det}\,J(\theta, \varphi)|=\fbox{ア}\cos\theta
$$である。

(2) 領域 $g(f^{-1}(U))$ の面積は $\fbox{イ}$ である。

解答形式

空欄 $\fbox{ア}$, $\fbox{イ}$ には正の実数が当てはまる。これを $10$ 進小数に表し,小数第 $4$ 位以降を切り捨てたものを改行区切りで半角数字 0-9 およびピリオド . を用いて入力しなさい。例えば,$1.2345\cdots$ を当てはめるなら 1.234 と解答すること。

求面積問題3

Kinmokusei 自動ジャッジ 難易度:
3年前

12

問題文

図中の青い線分の長さはすべて10,赤で示した角はすべて等しいです。
このとき、緑色部分(凹四角形)の面積を求めてください。
解答形式に注意!

解答形式

$答えはA\sqrt{B}の形になります。(A,Bは自然数)$
$A+Bを解答してください。$
$<注意>$
$根号の中が最小となるようにしてください。$
$半角数字で解答してください。$
$例 : green area=10\sqrt{8}=20\sqrt{2}→A=20,B=2→22 と解答$

求長問題

Kinmokusei 自動ジャッジ 難易度:
3年前

23

問題文

円の一部を折り返した図形です。赤、青の線分の長さがそれぞれ
7,3のとき、円の半径を求めてください。(解答形式に注意!)
折り返した円弧部分は元の円の中心を通ります。
Mは弧ABの中点です。
2020/07/04/13:29 解答に誤りがあったため更新しました。

解答形式

$自然数A,B,Cを用いてradius=\frac{A\sqrt{B}}{C} と表せます。
A+B+Cを解答してください。$
$A,Cは既約分数の形に、Bは根号の中が最小となるようにしてください。$
$例: \frac{4\sqrt{18}}{6}=2\sqrt{2}→A=2,B=2,C=1→5と解答$

二等分2

okapin 自動ジャッジ 難易度:
3年前

4

問題文

$xy$平面において点$O$を中心とする単位円上に異なる2点を取り、それぞれ$P_0,Q$とする(ただし$P_0,O,Q$は一直線上にないものとする)。また、$\angle P_0OQ$のうち小さい方の角を$\theta$とする$(0<\theta<\pi)$。
これから、以下の操作を$i=1,2,3,…,n$について計$n$回行う。

(操作)
弧$P_{i-1}Q$のうち短い方の弧を2等分するような単位円上の点を$P_i$とし、$\triangle P_{i-1}P_iQ$の面積を$S_i$とする。

このとき、
$$S_i=\sin\frac{\theta}{\fbox{ア}^i}-\frac{1}{2} \sin\frac{\theta}{\fbox{イ}^{i-1}}$$となるので、
$$\sum_{i=1}^n2^{i-1}S_i=\frac{1}{2}\left(\fbox{ウ}^n\sin\frac{\theta}{\fbox{エ}^n}-\sin\theta\right)$$となる。ここで$n\to\infty$とすると
右辺の極限値は、
$$\frac{1}{2}(\theta-\sin\theta)$$となり扇形$P_0OQ$から$\triangle P_0OQ$を取り除いた図形の面積に収束することが分かる(図形的にも明らか)。

解答形式

$\fbox{ア}$~$\fbox{エ}$に入る整数を半角で1,2,…行目に入力してください。

B-どんだk〜〜〜〜!!

ofukufukufuku 自動ジャッジ 難易度:
3年前

21

問題文

$x$ についての2次方程式
$$
3x^2+(5k-4)x+4k = 0
$$が異なる2つの正の実数解 $\alpha,\beta\;(\alpha<\beta)$ を持ち、$\beta$ の小数部分が $\alpha$ である。このとき、$k$ の値を求めよ。

解答形式

解答は
$$
\frac{N-\sqrt{M}}{L}
$$と表わされる($N,M,L$ は自然数)。分数や平方根は最も簡単な形にしてある。解答欄には $N, M, L$ の値をそれぞれ 1, 2, 3 行目に半角数字で入力せよ。

C-3n畳神話大系

halphy 自動ジャッジ 難易度:
3年前

22

問題文

$n$ を非負整数とする。縦の長さが $3$,横の長さが $2n$ の長方形をした部屋を,辺の長さが $1$ と $2$ の長方形の畳で敷き詰める方法の総数を $a_n$ とする。ただし,部屋を固定したとき,畳を回転または反転させて一致するような敷き詰め方は区別して数える。また,便宜上 $a_0=1$ と約束する。

例えば,縦の長さが $3$,横の長さが $2$ である部屋を畳で敷き詰める方法は
の $3$ 通りだから $a_1=3$ である。このとき
$$
a_n=\fbox{ア}\;a_{n-1}+\fbox{イ}\;\sum_{k=0}^{n-2}a_k\quad (n=2,3,\cdots)
$$が成り立つから
$$
a_4=\fbox{ウエオ}
$$である。また,上の漸化式を変形すると
$$
\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=\fbox{カ}+\sqrt{\fbox{キ}}
$$が成り立つことが分かる。

解答形式

$\fbox{ア}$ 〜 $\fbox{キ}$ には,半角数字 0 - 9 のいずれかが当てはまります。$\fbox{ア}$ 〜 $\fbox{キ}$ に当てはまるものを,改行区切りで入力してください。

F-ガンマ1/4

halphy 自動ジャッジ 難易度:
3年前

13

問題文

$n=0, 1,\cdots$ に対して

\begin{equation}
I_n=\int_0^1 \frac{x^n}{\sqrt{1-x^4}}dx
\end{equation}

と定める。この広義積分は収束することが知られている。

任意の $n=0,1,\cdots$ に対して
\begin{equation}
I_{n+\fbox{ア}}=\frac{n+\fbox{イ}}{n+\fbox{ウ}}I_n
\end{equation}が成り立つ(ただし $\fbox{ア}$ は $0$ でない)。これを利用すると

\begin{equation}
\prod_{n=1}^{\infty} \left[1-\frac{4}{(4n-1)^2}\right]=\frac{\fbox{エ}\;\pi^{\fbox{オ}}}{\alpha^{\fbox{カ}}}
\end{equation}が導かれる。ここで $\alpha$ は

\begin{equation}
\alpha=\int_0^{\infty} t^{-3/4}e^{-t}dt=\Gamma\left(\frac{1}{4}\right)
\end{equation}で定義される定数である(この広義積分は収束することが知られている)。

注意事項

以下の事実は証明なしに用いてよい。

  • 実数 $x>0$ に対して,広義積分
    \begin{equation}
    \Gamma(x) := \int_0^{\infty} t^{x-1}e^{-t}\;dt
    \end{equation}は収束する。
  • 実数 $x>0$ に対して
    \begin{equation}
    \Gamma(x+1)=x\Gamma(x)
    \end{equation}が成り立つ。
  • 実数 $x, y>0$ に対して
    \begin{equation}
    \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}=\int_0^1 t^{x-1}(1-t)^{y-1}\;dt
    \end{equation}が成り立つ。ただし,右辺の広義積分は収束することが知られている。
  • 実数 $0<x<1$ に対して
    \begin{equation}
    \Gamma(x)\Gamma(1-x)=\frac{\pi}{\sin\pi x}
    \end{equation}が成り立つ(相反公式)。

解答形式

$\fbox{ア}$ 〜 $\fbox{カ}$ には,半角数字 0 - 9 のいずれかが当てはまります。$\fbox{ア}$ 〜 $\fbox{カ}$ に当てはまるものを,改行区切りで入力してください。

A-長方形

hinu 自動ジャッジ 難易度:
3年前

42

問題文

平面上に長方形 ${\rm ABCD}$ と点 ${\rm P}$ があり、 ${\rm AP}=11,{\rm BP}=9,{\rm CP}=3$ を満たしている。このとき ${\rm DP}$ の長さ $x$ を求めよ。

解答形式

半角数字で入力してください。