公開日時: 2025年12月13日12:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
24×24の方眼紙に色を塗る。使う色は、ビリジアン、エメラルド、ライムである。
色を塗った後、方眼紙の上下をねじらずに丸めて繋げると筒状になり、さらに筒の端同士をねじらずに丸めて繋げるとトーラスになる。このとき、どのマス目に対しても次の条件を満たした。
・自身のマスに隣り合う4マスのうち、斜めに繋がっていない2マスを選ぶと、必ずどちらかが自身と同じ色で、どちらかが自身と異なる色である
・任意の2×2の正方形内の色に関して、同じ色で隣り合っている2マスが存在しなければ、正方形内に3種類の色が存在する
あり得る塗り方は何通りあるか。但し、方眼紙を回転させて一致するものは異なるものとして数える。
公開日時: 2025年12月12日17:45 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
$\omega$ を $1$ の $3$ 乗根のうち $1$ でないものの一方とします.
$$S={\sum_{k=1}^{2026} \frac{1}{k^2+(2\omega+1)k-1}}$$
としたとき,$\left|\frac{S-1}{S}\right|$ を求めてください.
求める値は互いに素な正の整数 $a,b$ を用いて $\frac{a}{b}$ と表せるので, $a+b$ を解答してください.
公開日時: 2025年12月12日10:01 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 採点者ジャッジ
$a,b$ を実数とする.$1$ 以上の実数 $k$ に対し,$x,y$ についての連立方程式
$$
\begin{cases}
k\cos x + \dfrac{1}{k}\sin y = a\\[6pt]
k\sin x + \dfrac{1}{k}\cos y = b
\end{cases}\
$$
が $0\le x\le\pi,\ 0\le y\le\pi$ の範囲に解をもつような点 $(a,b)$ の存在する領域を $D_k$ とし,$ab$ 平面における $D_k$ の面積を $S(k)$ とする.
(1) $D_1$ を $ab$ 平面上で求めよ.また,$S(1)$ を求めよ.
(2) $\displaystyle \pi<\lim_{k\to\infty}S(k)<2\pi$ を示せ.
(3) 連立方程式の解がさらに $x=y$ を満たすような点 $(a,b)$ の存在する領域を $E_k$ とする. $k$ が $1$ 以上のすべての実数値をとるとき,$E_k$ が通りうる範囲を $ab$ 平面上で求めよ.
特に指定しません。
公開日時: 2025年12月11日0:03 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 採点者ジャッジ
$a,b$ を正の整数とする.$2$ 以上の整数 $n$ に対して $n=ab$ と表せるような $(a,b)$ の組について,$a+b$ の最小値を $f(n)$ とする.
例えば, $f(5)=6,\ f(12)=7$ である.
(1) $n$ を正の整数とする.$f\bigl(2\cdot 3^{n}\bigr)$ を $n$ を用いて表せ.
(2) $a,b$ を正の整数とする.方程式
$$
f\bigl(2\cdot 3^{a}\bigr)=f\bigl(4\cdot 3^{b}\bigr)
$$の解が存在するかどうかを,理由を付けて判別せよ.存在するならば、その解を全て求めよ。
特に指定しません。
公開日時: 2025年12月9日23:39 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
以下の値を求めてください.
$$\sum_{k=0}^{2026} \frac{k^2}{k^2-2026k+1013×2026}$$
整数で解答してください
公開日時: 2025年12月6日17:37 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
$1$ 以上 $10^7$ 以下の $11$ の倍数全てに対して,それぞれの各位の和の総和を求めてください.