公開日時: 2025年10月3日12:30 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
$AB \lt AC$ を満たす鋭角三角形 $ABC$ の垂心を $H$,とする.直線 $BH, CH$ と三角形 $ABC$ の外接円との交点をそれぞれ $E (\not = B) , F (\not = C)$ とし,辺 $AB , AC$ と 線分 $EF$ との交点をそれぞれ $P , Q$ とする.直線 $AC$ に関して $P$ と対称な点を $R$,直線 $AB$ に関して $Q$ と対称な点を $S$ とし,三角形 $RSH$ の外心を $O$ とすると,以下が成立した.
$$ AH = 3 , BC = 4 , AO = 1$$
このとき,$AB$ の長さを求めてください.
互いに素な正整数 $b , c$ および正整数 $a$ を用いて $\dfrac{\sqrt{a} - b}{c}$ と表されるので,$a + b + c$ を答えてください.
公開日時: 2025年10月3日12:30 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
横一列に並んだ $14$ 個のオセロの石があります.そして,以下の操作を何度か行い,黒面を向いた石の個数をできるだけ少なくします.
全ての操作の終了後に黒面を向く石の個数を スコア とします.最初の石の配色は $2^{14}$ 通りありますが,これら全ての場合においてスコアの総和を求めてください.
但し,オセロの石は,片方が黒面で,もう片方が白面であるとする.
正整数で答えてください.
公開日時: 2025年10月3日12:07 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
以下で定義される関数 $f$ について, $f(15000,25000)$ を素数 $4999$ で割った余りを求めてください.
$$f(m,n)=\sum_{\ell=1}^{n}\sum_{\substack{a_1,\cdots,a_{\ell}\geq 1\\\\ a_1+\cdots +a_{\ell}=n}}(-1)^{\ell}\binom{m}{a_1}\cdots \binom{m}{a_{\ell}}$$
$$\quad$$
公開日時: 2025年10月1日21:09 / ジャンル: 数学 / カテゴリ: / 難易度: / ジャッジ形式: 自動ジャッジ
単位立方体の内部からランダムに点を $2$ つ選んだときの平均距離を答えてください.
答えは最大公約数が $1$ である正の整数 $a,b,c,d,e$ と互いに素な正の整数 $f,g$ と平方因子を持たない正の整数 $h,i,j,k$ と正の整数 $l,m,n$ を用いて
$$\frac{a+b\sqrt{h}-c\sqrt{i}-d\pi}{e}+\frac{\ln(l+\sqrt j)}{m}+\frac{f\ln(n+\sqrt k)}{g}$$
と表されるので, $a+b+c+d+e+f+g+h+i+j+k+l+m+n$ を解答してください.
ただし, $\ln x$ は $x$ の自然対数を表します.
解説は用意していません
公開日時: 2025年10月1日0:54 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
$AB \lt AC$ なる三角形 $ABC$ について,その外心を $O$ とし,線分 $BC$ 上に点 $D$ を $BD \gt CD$ となるように取ります. $B,C$ から直線 $AD$ に下ろした垂線の足をそれぞれ $X,Y$ とし, $X$ を通り直線 $AB$ に平行な直線と $Y$ を通り直線 $AC$ に平行な直線の交点を $Z$ とすると,三角形 $XYZ$ の外接円と三角形 $ABC$ の外接円は点 $T$ で接しました.また,直線 $BC$ について $O$ と対称な点を $S$ とすると,以下が成り立ちました.
$$ AS:AO:OD = 7:5:2$$このとき, $\dfrac{AT}{AO}$ の値は互いに素な正の整数 $a,b$ を用いて $\sqrt{\dfrac{a}{b}}$ と表せるので, $a+b$ の値を解答してください.
正の整数を半角で解答.
公開日時: 2025年9月30日22:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
正の整数 $n$ について,$f(n)$ で $n$ の正の約数であり,$n$ の最小の素因数を素因数に持たないようなもののうち最大のものを表す.例えば,$f(2\times 3^2)=3^2, f(2\times 3\times 5)=3\times 5$ である.ただし,$f(1)=1$ と扱う.
また,$g(n)$ で $n$ の正の約数 $d$ すべてについて $f(d)$ の総和を表す.
このとき,
$$g(2\times 3\times 7\times 11\times 13\times 17)-g(5\times 7\times 11\times 13\times 17)$$ を求めよ.
公開日時: 2025年9月30日22:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
$p^2q+16r=2s^2$ を満たす素数の組 $(p,q,r,s)$ すべてについて,$pqrs$ の総和を解答せよ.
公開日時: 2025年9月30日22:00 / ジャンル: 数学 / カテゴリ: / 難易度: / ジャッジ形式: 自動ジャッジ
一辺の長さが $68$ の正三角形 $ABC$ について,線分 $BC$ 上に点 $D$ をとり,$D$ から $AB,AC$ に降ろした垂線の足をそれぞれ $E,F$ とする.$BE=14$ が成り立つとき,線分 $CF$ の長さを求めよ.
公開日時: 2025年9月30日22:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
$14\times 14$ のマス目に以下のように整数を書き込む.ただし,左から $m$, 上から $n$ 番目のマスを $(m,n)$ で表すものとする.
いま,PDC 君は $(m,n)$ にいるとき $(m+1,n), (m,n+1)$ に瞬間移動することができ,またそれ以外の移動をすることができない.あるマスからあるマスへの経路について,全ての訪問したマス(出発地点と到着地点を含む)に書き込まれた数字の総和をスコアとする.
$(1,1)$ から $(14,14)$ まで移動するとき,スコアが最小となるような移動方法はいくつあるか?
公開日時: 2025年9月30日22:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
$$x^4-xy^3+y^2=11, x^3y-y^4+x^2=13$$ を満たす複素数の組 $(x,y)$ について,$\dfrac{y}{x}$ としてありうる値の総和は互いに素な正の整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ を解答せよ.