nmoon

nmoon

Twitter ID: @_nmoon__

統計情報

フォロー数7
フォロワー数22
投稿した問題数12
コンテスト開催数2
コンテスト参加数1
解答された数299
いいねされた数2
解答した問題数656
正解した問題数529
正解率80.6%

人気問題

C

nmoon 自動ジャッジ 難易度:
14月前

66

問題文

正整数 $a , b$ の最大公約数を $g(\not=1)$,最小公倍数を $l$ としたとき,以下が成立しました.

$$\dfrac{l - 1}{g - 1} = 100$$

このときの $(a , b)$ の組としてあり得るものを全て求め,$a + b$ の総和を求めてください.

解答形式

正整数で答えて下さい.

B

nmoon 自動ジャッジ 難易度:
14月前

47

問題文

$-1\leq k \leq 1$ を満たす実数 $k$ において,$10k + 11\sqrt{1-k^2}$ の最大値を $2$ 乗したものを求めてください.

解答形式

正整数で答えて下さい.

A

nmoon 自動ジャッジ 難易度:
14月前

44

問題文

$11 \times 11$ の長方形のマスのうちいくつかを次の条件を満たしながら黒色に塗っていきます.

  • 黒色に塗られた任意の $2$ つのマスは辺を共有しない(頂点は共有しても良い).

このとき,黒色に塗ることができるマスの数は最大でいくつですか.

解答形式

正整数で答えて下さい.

A

nmoon 自動ジャッジ 難易度:
2月前

34

問題文

2つの正整数 $a,b$ の組のうち,最小公倍数が最大公約数の $10$ 倍となり,$a+b=154$ を満たすもの全てについて,$ab$ の総和を求めてください.

解答形式

非負整数で解答してください.

B

nmoon 自動ジャッジ 難易度:
2月前

29

問題文

3種類の文字 $A,B,C$ を用いて以下の条件を満たした長さが5の文字列は全部でいくつあるか.

  • $A$ の右隣にある文字は $B$ ではない.

  • $B$ の右隣にある文字は $C$ ではない.

解答形式

非負整数で解答して下さい.

D

nmoon 自動ジャッジ 難易度:
14月前

16

問題文

正五角形 $ABCDE$ があり,その中心を $O$ とします.線分 $BO$ 上に点 $F$ を,線分 $EO$ 上に点 $G$ をとり,三角形 $AFG$ の外接円と線分 $AB,AE$ との交点をそれぞれ点 $P,Q$ とすると,以下が成立しました.

$$\angle{FAG}=54^{\circ} , PB=28 , QE = 30$$

このとき,正五角形 $ABCDE$ の一辺の長さを求めてください.
ただし,正多角形の中心とはその正多角形の外接円の中心のことを表すとします.

解答形式

答えは正整数 $a,b,c$ を用いて $a+\sqrt{b - \sqrt{c}}$ と表されるので,$a+b+c$ を解答してください.

新着問題

D

nmoon 自動ジャッジ 難易度:
2月前

10

問題文

4次方程式 $x^4-4x^3-21x^2-8x+4=0$ の4つの相異なる実数解を,小さいものから順に $a_{1},a_{2},a_{3},a_{4}$ とします.このとき,以下の値を求めてください:

$$\displaystyle\frac{1}{a_{1}^2-a_{1}a_{2}+a_{2}^2}+ \displaystyle\frac{1}{a_{3}^2-a_{3}a_{4}+a_{4}^2} $$

解答形式

互いに素な2つの正整数 $a,b$ を用いて $\displaystyle\frac{a}{b}$ と表されるので,$a+b$ を求めてください.

A

nmoon 自動ジャッジ 難易度:
2月前

34

問題文

2つの正整数 $a,b$ の組のうち,最小公倍数が最大公約数の $10$ 倍となり,$a+b=154$ を満たすもの全てについて,$ab$ の総和を求めてください.

解答形式

非負整数で解答してください.

B

nmoon 自動ジャッジ 難易度:
2月前

29

問題文

3種類の文字 $A,B,C$ を用いて以下の条件を満たした長さが5の文字列は全部でいくつあるか.

  • $A$ の右隣にある文字は $B$ ではない.

  • $B$ の右隣にある文字は $C$ ではない.

解答形式

非負整数で解答して下さい.

C

nmoon 自動ジャッジ 難易度:
2月前

11

問題文

三角形 $ABC$ の外心を $O$,垂心を $H$,外接円を $\Gamma$ とする.そして,以下のように点を4つとる.

  • 直線 $BH$ と $\Gamma$ との交点を $P(\not=B)$ とする.
  • 直線 $PO$ と $\Gamma$ との交点を $Q(\not=P)$ とする.
  • 直線 $QH$ と $\Gamma$ との交点を $R(\not=Q)$ とする.
  • 直線 $RO$ と $\Gamma$ との交点を $S(\not=R)$ とする.

このとき,3点 $ C,H,S$ が同一直線上にあった.

$$AH=17 , AO=11$$

のとき,三角形 $ABC$ の面積を求めてください.

解答形式

答えを2乗した値は,互いに素な2つの正整数 $a,b$ を用いて $\displaystyle\frac{a}{b}$ と表されるので,$a+b$ を求めてください.

外心と内心

nmoon 自動ジャッジ 難易度:
9月前

6

問題文

$\angle{A} = 60^{\circ}$ なる三角形 $ABC$ の内心を $I$,外心を $O$ とする.直線 $IO$ と直線 $BC$ の交点を $D$ とし,直線 $AD$ と三角形 $ABC$ の外接円との交点を $E(\not = A)$ とすると,以下が成立した:

$$EI = 23 , IO = 18$$

このとき,線分 $AI$ の長さは,互いに素な正整数 $a,b$ を用いて$\displaystyle\frac{a}{b}$ と表されるので,$a + b$ を解答してください.

KMTで使ったやつ②

nmoon 自動ジャッジ 難易度:
10月前

11

問題文

三角形 $ABC$ の辺 $BC$ の中点を $M$ とし,辺 $AB,AC$ 上にそれぞれ点 $D,E$ をとると,以下が成立した:

$$\angle{DME}=90^{\circ},AD=6,DB=2,AE=7,EC=3$$

このとき,辺 $BC$ の長さの $2$ 乗を求めてください.

解答形式

非負整数で解答してください.

開催したコンテスト

コンテスト名 日程 作成者
Nyannyan Math Contest 002 (NMC002) 2024-11-02 19:00
〜 2024-11-02 20:00
nmoon nmoon asmin asmin imabc imabc
Nyannyan math contest 001 (NMC001) 2023-11-02 21:00
〜 2023-11-02 22:00
nmoon nmoon hiro1729 hiro1729 MARTH MARTH

参加したコンテスト

順位 コンテスト名 得点 終了日時 作成者
21 ΠMC002 200 2023年10月27日23:20 Furina Furina pomodor_ap pomodor_ap JoeFight JoeFight conan_kun conan_kun