正整数 $a , b$ の最大公約数を $g(\not=1)$,最小公倍数を $l$ としたとき,以下が成立しました.
$$\dfrac{l - 1}{g - 1} = 100$$
このときの $(a , b)$ の組としてあり得るものを全て求め,$a + b$ の総和を求めてください.
正整数で答えて下さい.
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
$-1\leq k \leq 1$ を満たす実数 $k$ において,$10k + 11\sqrt{1-k^2}$ の最大値を $2$ 乗したものを求めてください.
$11 \times 11$ の長方形のマスのうちいくつかを次の条件を満たしながら黒色に塗っていきます.
このとき,黒色に塗ることができるマスの数は最大でいくつですか.
素数 $p$ に対して,$\dfrac{1}{p}$ を小数表記したときに循環する長さを $\Pi(p)$ で表します.正整数 $n$ に対し,$\Pi(p)=n$ なる $p$ のうち最小のものを $M(n)$ とするとき,以下の値を求めてください.ただし,有限小数の場合循環はしないとします. $$M(1)+M(2)+M(3)+M(4)+M(5)+M(6)$$
答えとなる数字のみを解答してください.
正整数 $N$ に対し, $f(N)$ を以下のように定めます. ・ $N$ の正の約数全てに対し, それが $2$ で割り切れる最大の回数の総和
例えば, $f(6) = 2, f(4) = 3$ となります. このとき, $f(M) = 40$ となる最小の正整数 $M$ を解答して下さい.
正整数を解答して下さい.
整数 $n$ について,$\dfrac{10^n+11}{3}$ が平方数になるものは存在しますか?存在しないなら $-1$ を解答してください.存在する場合,最小の $n$ を解答してください.ただし答えは非常に大きくなる可能性があるので,$n$ を素数 $998244353$ で割ったあまりを解答してください.
存在しないなら $-1$ を解答してください.存在する場合,最小の $n$ を解答してください.ただし答えは非常に大きくなる可能性があるので,$n$ を素数 $998244353$ で割ったあまりを解答してください.
任意の二次関数$\ f\ $についてある$\ \theta \ (0\le \theta \le 2\pi)$があって,$\ xy$座標平面上で$\ y=f(x)\ $を$\ \theta \ $反時計回りに回転させたものを考える.$\ $これがある関数$\ g(x)\ $で$\ y=g(x)\ $と表せるときの$\ \theta\ $としてありうるものの総和を$\ S\ $とするとき$\ S\ $を超えない最大の整数を回答して下さい.
整数で回答してください.
直方体 $ABCD-EFGH$があり, $AB=\sqrt{2},AD=2023\sqrt{2},AE=2024\sqrt{2}$ です. 三角形 $BDE$ の面積を求めてください.
$$\angle{ADB}=\angle{ADC}=\angle{CDB}=90^°$$なる四面体 $ABCD$ の外接球に関して、体積を $V$ 表面積を $S$ としたとき、非負整数 $p$ を用いて、$V=p\pi,S=p\pi$ が成り立ちました。 このとき、四面体 $ABCD$ の体積の最大値の2乗を求めてください。
半角数字で入力して下さい。
正五角形 $ABCDE$ があり,その中心を $O$ とします.線分 $BO$ 上に点 $F$ を,線分 $EO$ 上に点 $G$ をとり,三角形 $AFG$ の外接円と線分 $AB,AE$ との交点をそれぞれ点 $P,Q$ とすると,以下が成立しました.
$$\angle{FAG}=54^{\circ} , PB=28 , QE = 30$$
このとき,正五角形 $ABCDE$ の一辺の長さを求めてください. ただし,正多角形の中心とはその正多角形の外接円の中心のことを表すとします.
答えは正整数 $a,b,c$ を用いて $a+\sqrt{b - \sqrt{c}}$ と表されるので,$a+b+c$ を解答してください.
$AB=100,AC=200$ なる $\triangle ABC$ において,$A$ 類似中線と $BC$ の交点を $X$ とします.$BX,CX$ がいずれも正整数値であるとき,$AX$ の取り得る正整数値の総和を求めてください.
$AX$ の取り得る正整数値の総和を解答してください.
$ $ 地理奈ちゃんは,$1$ を含んだ数列をいくつか思い浮かべようとしています. $ $ そこで,以下のルールをすべて守った数列を,良い数列と呼ぶことにします:
$ $ この時,良い数列は全部でいくつありますか?
非負整数を半角で解答してください.
$14^3$ の $16$ 個の正の約数を並び替えた数列を $a_1,\ldots,a_{16}$ とおき,$15^3$ の $16$ 個の正の約数を並び替えた数列を$b_1,\ldots,b_{16}$ とおきます.この二つの数列のスコアを $$ \sum_{k=1}^{16} \frac{a_k}{b_k} $$ で定めます.数列 $a,b$ の組として考えられるものは $(16!)^2$ 通りありますが,これらの組におけるスコアの(相加)平均を求めてください.ただし,求める値は互いに素な正整数 $p,q$ を用いて,$\dfrac{p}{q}$ と表されるため,$p+q$ を解答してください.
半角数字で解答してください.