mahiro

mahiro

Twitter ID: @mahiropen

数列の桁和

mahiro 自動ジャッジ 難易度:
6月前

8

問題文

以下の式の ( $10$ 進法における) 桁和を求めなさい.$$4+\sum_{k=0}^{99}(500+(-1)^k×513)×10^k$$

解答形式

非負整数で回答して下さい.

6月前

11

問題

$1$ 以上の整数 $n$ について関数 $f(n)$ は以下の式により定義されます.$$f(n)=\sum_{k=1}^{2n}\prod_{m=0}^{2^9}(k-m)$$ このとき,$f(n)=0$ の成り立つ $n$ の総和は,素数 $p$ と整数 $m$ を用いて,$pm$ と示せるので,$p+m$ の最小値を回答してください.
 ただし,素数表:https://onlinemathcontest.com/primes は用いても構いません.

解答形式

非負整数で回答してください.

除夜コン没問

mahiro 自動ジャッジ 難易度:
10月前

7

問題文

$f(x)$ は $x$ が $3$ で割り切れる回数を示します.
このとき,$$f(\prod_{k=2}^{2024} \lfloor \log_2 k\rfloor )$$ を求めて下さい.

解答形式

一意の整数値に定まるので、それを半角で解答してください.

見掛け倒し

mahiro 自動ジャッジ 難易度:
12月前

28

問題文

$2^{20}!!$ は $2$ で何回割り切れますか?

解答形式

半角数字でお答え下さい。
計算機はご自由にお使いください。

自作問題1

mahiro 自動ジャッジ 難易度:
13月前

15

問題文

$$\angle{ADB}=\angle{ADC}=\angle{CDB}=90^°$$なる四面体 $ABCD$ の外接球に関して、体積を $V$ 表面積を $S$ としたとき、非負整数 $p$ を用いて、$V=p\pi,S=p\pi$ が成り立ちました。
このとき、四面体 $ABCD$ の体積の最大値の2乗を求めてください。

解答形式

半角数字で入力して下さい。