$7216$ のように,
の $2$ 条件を満たす $4$ 桁の正整数を 祭数 といいます.最大の祭数を解答してください.ただし,上 $2$ 桁目等が $0$ である場合の上 $1$ 桁を無視してできる数とは上 $1$ 桁の数とそれに続く $0$ を無視した数とします.例えば $1011$ の上 $1$ 桁を無視してできる数は $11$ です.
半角整数で入力してください.
holoXのずのーである『博衣こより』はとある実験に成功し、同じholoXのメンバーである『ラプラス・ダークネス』『鷹嶺ルイ』『沙花叉クロヱ』『風真いろは』と自分自身をそれぞれ $6$ 人ずつに分身させてしまいました.
分身させた計 $30$ 人のうち $6$ 人を選び,下記の条件に沿って左右 $1$ 列に並べる方法は何通りありますか.
半角整数で入力してください.
$\triangle{ABC}$ について直線 $BC$ 上に $W,B,C,E$ の順と並ぶように点 $W,E$ を取ると以下のことが成立しました.
このとき $\triangle{BAE}$ の外心を $O$ とすると,互い素な正整数 $a,b$ を用いて,
$$\triangle{BAE}:\triangle{WAO}=a:b$$
と面積比が表せるので $a+b$ の値を解答してください.
半角整数で入力してください.
$\angle ABC $ と $\angle BCA$ が鋭角であるような $\triangle ABC$ について,辺 $BC$ の中点を $M$ とします.また,$M$ から辺 $AB,AC$ におろした垂線の足をそれぞれ $P, Q$ とすると、線分 $AM, BQ, CP$ が一点で交わります.
$$ AB = 12, \ \ BC= 20 $$
のとき,$\triangle ABC$ の面積の二乗としてありうる値の総和を解答してください。
答えは正の整数値となるので, その整数値を半角で入力してください.
正角形 $ABCDEF$ について,辺 $AB,BC,DE, EF$ 上にそれぞれ点 $P,Q,R,S$ があり,
$$AP =1,\ \ BQ =2,\ \ DR =3,\ \ ES =4$$ が成り立ちます.四角形 $PQRS$ の面積が $64\sqrt3$ のとき,正六角形の一辺の長さは正の整数 $a,b$ を用いて $a + \sqrt b$ と表せるので $a+b$ の値を解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
正三角形 $ ABC$ の辺 $AB,BC,CA$ 上にそれぞれ点 $P,Q,R$ があり,
$$PQ=3,\ \ \ \ QR=5,\ \ \ \ RP=7,\ \ \ \ AB=9$$ を満たしています.このとき,線分 $AQ$ の長さは互いに素な整数 $a,b$ を用いて $\displaystyle \frac{a}{b}$ と書けるので $a+b$ の値を解答してください.
答えは正の整数値となるので, その整数値を半角で入力してください.
正方形 $ABCD$ の辺 $BC$ 上に点 $E$ をとると,
$$BE=7,\ \ \ \ CE=5$$が成り立ちます.$E$ を中心とした半径 $7$ の円を $O$ とし,正方形 $ABCD$ の内部かつ円 $O$ の周上の点 $F$ をとると直線 $DF$ は円 $O$ の接線となりました.このとき,線分 $CF$ の長さは正整数 $a,b$ と素数 $c$ を用いて $\displaystyle{\frac{a+\sqrt{b}}{c}}$ と書けるので $a+b+c$ の値を解答してください.
答えは正の整数値となるので, その整数値を半角で入力してください.
追記
答えひらがなな訳ありませんでした、失礼しました
勇者は座標平面上の原点 $(0,0)$ にいます. 勇者は点 $(6,6)$ まで $x$ 座標か $y$ 座標の少なくとも一方が整数である点のみを通って最短距離となるように移動します.
しかしながら,魔王の罠が直線 $\displaystyle{y=x+\frac{5}{2}}$ 上に張られていて,勇者は罠の張られている直線上を通るたびに $1$ ダメージずつ受けてしまいます.
勇者が最短距離で移動する道のりは ${}_{12}\mathrm{C}_6$ 通り考えられますが,それらすべてについて受けるダメージの平均値を求めてください.ただし,その平均値は互いに素な正整数 $a,b$ を用いて $\displaystyle{\frac{a}{b}}$ と書けるので $a+b$ の値を解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
座標平面において $A(0,4000),B(-3000,0),C(3000,0)$ をとります.次の条件をすべて満たすような直線 $\ell$ として考えられるものは何通りありますか.
答えは正の整数値となるので,その整数値を半角で入力してください.
正整数 $N$ について,次の $2$ つのことがわかっています.
$10a+b$ の値を解答してください.
答えは正の整数値となるので, その整数値を半角で入力してください.