tsukemono

tsukemono

統計情報

フォロー数2
フォロワー数3
投稿した問題数20
コンテスト開催数1
コンテスト参加数0
解答された数289
いいねされた数8
解答した問題数4
正解した問題数4
正解率100.0%

人気問題

nCrの足し算

tsukemono 自動ジャッジ 難易度:
17月前

62

問題文

次の計算をせよ。
$$
{}_{12}{\mathrm{C}}_{1}\quad+{}_{12}{\mathrm{C}}_{2}\quad+{}_{12}{\mathrm{C}}_{3}\quad+……+{}_{12}{\mathrm{C}}_{12}\quad
$$

解答形式

半角算用数字で解答してください

整数問題(2)

tsukemono 自動ジャッジ 難易度:
15月前

43

問題文

$\frac{n}{144}$が$1$より小さい既約分数になるような自然数$n$の個数を求めよ。

解答形式

半角算用数字で答えてください。

2変数関数の最大最小

tsukemono 自動ジャッジ 難易度:
20月前

34

問題文

関数$f(x,y)=x²+y²-2x+4y+1$の最小値とそのときの$x,y$の値を求めよ。
ただし、$x,y$はいずれも実数とする。

解答形式

x=𓏸𓏸,y=𓏸𓏸で、最小値𓏸𓏸と答えてください
数字は全て半角で答えてください

分数の足し算

tsukemono 自動ジャッジ 難易度:
20月前

33

問題文

次の計算をせよ。
$$
\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}
$$

解答形式

分子/分母 の形で解答してください
既約分数で解答してください
例 1/3

積分

tsukemono 自動ジャッジ 難易度:
20月前

28

問題文

次の定積分を求めよ。
$$
\int_{-1}^1\quad(x^{101}+2x^{99}+3x^{97}+・・・+51x)dx
$$

解答形式

半角数字のみを使って解答してください。

数学と理科

tsukemono 自動ジャッジ 難易度:
16月前

17

問題文

次の式の①に当てはまる数字は?

H(1+e)=3
B(1+e)=9
N(1+e)=17
C(1+a)=①

解答形式

半角算用数字で解答してください

新着問題

必要条件と十分条件

tsukemono 自動ジャッジ 難易度:
11日前

11

第1問

次の文章中の空欄(①)に当てはまるものとしてもっとも適切なものを、ア~エのうちから1つ選び、記号で答えよ。

$a,b,c$を実数とする。$ax^2+bx+c=0$であることは、$x=\frac{-b±\sqrt{b^2-4ac}}{2a}$であるための(①)。

ア 必要十分条件である
イ 必要条件であるが十分条件でない
ウ 十分条件であるが必要条件でない
エ 必要条件でも十分条件でもない

第4問

tsukemono 採点者ジャッジ 難易度:
14日前

3

第4問

$θ$を媒介変数とし、次のように表される曲線$C$を考える。$$\begin{cases}x=θ-sinθ\\y=1-cosθ\end{cases}$$
$0≦θ≦2π$として、この曲線$C$の長さ$L$を求めよ。

第1問

tsukemono 採点者ジャッジ 難易度:
14日前

5

第1問

次の空欄$(ア)~(オ)$に当てはまる数字をそれぞれ答えよ。
数列{$a_{n}$}を次のように定める。
$$a_1=a_2=1,a_{n+2}-a_{n+1}+a_n=0 (nは自然数)$$この数列の一般項は

$a_n=\frac{(ア)}{\sqrt{(イ)}}$$sin\frac{nπ}{(ウ)}$
である。
また、$a_{2025}=(エ)$であり、$$\sum_{n=1}^{2025}{a_n}=(オ)\quad$$である。

第6問

tsukemono 採点者ジャッジ 難易度:
14日前

3

第6問

次の問に答えよ。
$(1)$ $cos3θ=4cos^3θ-3cosθ$を示せ。
$(2)$ $cos4θ$を$cosθ$の整式で表せ。
$(3)$ $cos\frac{2}{7}π$が無理数であることを示せ。

第3問

tsukemono 採点者ジャッジ 難易度:
14日前

7

第3問

$t$が実数全体を動くとする。
このとき、点$$(\frac{1}{1+t^2},\frac{t}{1+t^2})$$はどのような図形を描くか答えよ。

解答する際の注意

答えの図形が正確に分かるようにお答えください。

第2問

tsukemono 採点者ジャッジ 難易度:
14日前

5

第2問

次の空欄$(ア)~(エ)$に当てはまる数字をそれぞれ答えよ。
関数$f(x)$を$$f(x)=\frac{log(x)}{x}$$と定める。
$f(x)$は、$x=(ア)$で、極大値$\frac{(イ)}{e}$をとる。
また、$$\int_1^e{f(x)dx}\quad$$
の値は$\frac{(ウ)}{(エ)}$である。

ただし、対数は自然対数を表し、$e$は自然対数の底とする。

開催したコンテスト

コンテスト名 日程 作成者
第1回コンテスト(2025年11月) 2025-10-28 00:00
〜 2025-11-30 23:59
tsukemono tsukemono

参加したコンテスト

まだ参加したコンテストがありません