Americium243

Americium243

整数と幾何と多項式好き
整数と幾何と多項式好き

解の逆数を解とする方程式

Americium243 自動ジャッジ 難易度:
3日前

17

問題文

実数係数 $10$ 次多項式 $f(x)$ は以下を満たしている.
$$f(0)=2025$$$$f(1)=25$$

$f(x)=0$ の(重複度を込めた)$10$ 個の複素数解を $\alpha_1,\alpha_2,...,\alpha_{10}$ とする.
$\frac{1}{\alpha_1},\frac{1}{\alpha_2},...,\frac{1}{\alpha_{10}}$ を根にもつ実数係数 $10$ 次多項式のうち,最高次の係数が $1$ であるものを $g(x)$ としたとき,$g(1)$ を求めよ.

解答形式

求める値は互いに素な正の整数 $a,b$ を用いて $\frac{a}{b}$ と表せるので,$a+b$ を解答してください

積分に関する整数問題

Americium243 自動ジャッジ 難易度:
16日前

6

問題文

$a,n$ を正の整数とする.
$$\int ax^ne^xdx$$
の $e^x$ の係数が $2026!$ であるような $(a,n)$ の組は何個ありますか?

解答形式

整数で解答してください

漸化式②

Americium243 自動ジャッジ 難易度:
40日前

2

問題文

正の整数 ${n}$ に対して定義される数列 ${a_n}$ が
$${a_1=2, a_2=-4, a_{n+2}-2a_{n+1}+4a_n=0}$$
を満たしている。
${|a_{2025}|}$ の正の約数の個数を求めよ。

解答形式

整数で入力してください

漸化式①

Americium243 自動ジャッジ 難易度:
40日前

4

問題文

整数 ${n}$ に対して定義される数列 ${a_n}$ が
$${a_0=2, a_1=4, a_{n+2}-4a_{n+1}+a_n=0}$$
を満たしている。
$${a_{2026}-a_{-2026}}$$
を求めよ。

解答形式

整数で入力してください

約数ひっかけ問題

Americium243 自動ジャッジ 難易度:
20月前

43

問題文

注:すみません,ネタ問題です.TeXも使っていません.

任意の自然数nについて,約数の総和をp(n),約数の個数をq(n)とすると,整数の定数kを用いてp(n)=k×(q(n))と表せます.kを求めてください.

解答形式

半角の整数で解答してください.
余計な空白や改行を含まないよう注意してください.