正六角形内に、図のように円を配置しました。青で示した角の大きさを求めてください。
$\angle x=a°$ です。$a$ に当てはまる0以上180未満の数値を半角で回答してください。
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
正三角形・長方形・半円を組み合わせた以下の図形について、図中緑の線分の長さが6のとき、図形全体の面積を求めてください。
半角数字で解答してください。
図の条件において、$x$ の長さを求めてください。 なお、図中オレンジの点は直角三角形の内心です。
解答は $x=\sqrt a$ となります。$a$ を半角数字で解答してください。
図の条件の下で、青で示した線分の長さを求めてください。
図において、青で示した部分の面積と、赤で示した部分の面積の差が $63$ のとき、四角形 $ABCD$ の面積を求めてください。
図の条件の下で、青で示した線分の長さ $x$ を求めてください。 なお、図中の赤点(centroid)は三角形の重心です。
$x^2$ は正整数になるので、この値を解答してください。
図の条件の下で、緑で示した三角形の面積を求めてください。
図の条件の下で、青で示した角の大きさを求めてください。
解答を弧度法で表すと、$x=\dfrac{a}{b}\pi$ です。$a+b$を解答してください。 ただし、$a,b$ は互いに素な正整数で、$0\leq \dfrac{a}{b} \lt 1$ を満たします。
図の条件の下で、赤で示した線分の長さを求めてください。
正方形に図のように線を引きました。外側の正方形の一辺が10のとき、青で示した部分の面積を求めてください。
解答は自然数 $a,b$ によって $\dfrac{a}{b}$ と表せるので $a+b$ の値を半角数字で解答してください。
半円の内部に正方形を2つ、図のように配置しました。赤い線分の長さ(=2つの正方形の一辺の差)が3であるとき、青で示した部分の面積と緑で示された部分の面積の差を求めてください。
正方形・正三角形・円を組み合わせた以下の図について、$x$で示した角の大きさを求めてください。
半角数字で、0以上180未満の整数を解答してください。 「度」や「°」などの単位を付けないよう注意してください。
$x=a$ 度 です。$a$ に当てはまる、0以上180未満の値を半角数字で解答してください。