補足:線分 $HD$ の中点を $M$ とすれば、中点連結定理(の拡張)と重心の性質から $MI=\dfrac{3+6}{2},\ CJ=2MI\ (=3+6=9)$ である。
この問題を解いた人はこんな問題も解いています
正三角形・長方形・半円を組み合わせた以下の図形について、図中緑の線分の長さが6のとき、図形全体の面積を求めてください。
半角数字で解答してください。
図の条件において、$x$ の長さを求めてください。 なお、図中オレンジの点は直角三角形の内心です。
解答は $x=\sqrt a$ となります。$a$ を半角数字で解答してください。
図の条件の下で、緑で示した三角形の面積を求めてください。
図において、青で示した部分の面積と、赤で示した部分の面積の差が $63$ のとき、四角形 $ABCD$ の面積を求めてください。
図の条件の下で、赤で示した線分の長さを求めてください。
正六角形内に、図のように円を配置しました。青で示した角の大きさを求めてください。
$\angle x=a°$ です。$a$ に当てはまる0以上180未満の数値を半角で回答してください。
図の条件の下で、青で示した角の大きさを求めてください。
解答を弧度法で表すと、$x=\dfrac{a}{b}\pi$ です。$a+b$を解答してください。 ただし、$a,b$ は互いに素な正整数で、$0\leq \dfrac{a}{b} \lt 1$ を満たします。
図の条件の下で、青で示した線分の長さを求めてください。
$x=a$ 度 です。$a$ に当てはまる、0以上180未満の値を半角数字で解答してください。
正方形・正三角形・円を組み合わせた以下の図について、$x$で示した角の大きさを求めてください。
半角数字で、0以上180未満の整数を解答してください。 「度」や「°」などの単位を付けないよう注意してください。
解答を度数法で表し、0以上180未満の数値を半角数字で解答してください。 単位("度・°"など)はつけないでください。
正方形と正三角形を組み合わせた図のような図形について, 青で示した角の大きさを求めてください.
0以上180未満の整数を半角数字で解答してください。 ただし度数法で、単位を付けずに解答してください。